351 research outputs found
The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus
Abstract As survival after cardiac surgery continues to improve, an increasing number of patients with hypoplastic left heart syndrome are reaching school age and beyond, with growing recognition of the wide range of neurodevelopmental challenges many survivors face. Improvements in fetal detection rates, coupled with advances in fetal ultrasound and MRI imaging, are contributing to a growing body of evidence that abnormal brain architecture is in fact present before birth in hypoplastic left heart syndrome patients, rather than being solely attributable to postnatal factors. We present an overview of the contemporary data on neurodevelopmental outcomes in hypoplastic left heart syndrome, focussing on imaging techniques that are providing greater insight into the nature of disruptions to the fetal circulation, alterations in cerebral blood flow and substrate delivery, disordered brain development, and an increased potential for neurological injury. These susceptibilities are present before any intervention, and are almost certainly substantial contributors to adverse neurodevelopmental outcomes in later childhood. The task now is to determine which subgroups of patients with hypoplastic left heart syndrome are at particular risk of poor neurodevelopmental outcomes and how that risk might be modified. This will allow for more comprehensive counselling for carers, better-informed decision making before birth, and earlier, more tailored provision of neuroprotective strategies and developmental support in the postnatal period
PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI
In this paper we present a novel method for the correction of motion
artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of
the whole uterus. Contrary to current slice-to-volume registration (SVR)
methods, requiring an inflexible anatomical enclosure of a single investigated
organ, the proposed patch-to-volume reconstruction (PVR) approach is able to
reconstruct a large field of view of non-rigidly deforming structures. It
relaxes rigid motion assumptions by introducing a specific amount of redundant
information that is exploited with parallelized patch-wise optimization,
super-resolution, and automatic outlier rejection. We further describe and
provide an efficient parallel implementation of PVR allowing its execution
within reasonable time on commercially available graphics processing units
(GPU), enabling its use in the clinical practice. We evaluate PVR's
computational overhead compared to standard methods and observe improved
reconstruction accuracy in presence of affine motion artifacts of approximately
30% compared to conventional SVR in synthetic experiments. Furthermore, we have
evaluated our method qualitatively and quantitatively on real fetal MRI data
subject to maternal breathing and sudden fetal movements. We evaluate
peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and
cross correlation (CC) with respect to the originally acquired data and provide
a method for visual inspection of reconstruction uncertainty. With these
experiments we demonstrate successful application of PVR motion compensation to
the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical
Imaging. v2: wadded funders acknowledgements to preprin
The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus
Abstract As survival after cardiac surgery continues to improve, an increasing number of patients with hypoplastic left heart syndrome are reaching school age and beyond, with growing recognition of the wide range of neurodevelopmental challenges many survivors face. Improvements in fetal detection rates, coupled with advances in fetal ultrasound and MRI imaging, are contributing to a growing body of evidence that abnormal brain architecture is in fact present before birth in hypoplastic left heart syndrome patients, rather than being solely attributable to postnatal factors. We present an overview of the contemporary data on neurodevelopmental outcomes in hypoplastic left heart syndrome, focussing on imaging techniques that are providing greater insight into the nature of disruptions to the fetal circulation, alterations in cerebral blood flow and substrate delivery, disordered brain development, and an increased potential for neurological injury. These susceptibilities are present before any intervention, and are almost certainly substantial contributors to adverse neurodevelopmental outcomes in later childhood. The task now is to determine which subgroups of patients with hypoplastic left heart syndrome are at particular risk of poor neurodevelopmental outcomes and how that risk might be modified. This will allow for more comprehensive counselling for carers, better-informed decision making before birth, and earlier, more tailored provision of neuroprotective strategies and developmental support in the postnatal period
DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks
In this paper, we propose DeepCut, a method to obtain pixelwise object
segmentations given an image dataset labelled with bounding box annotations. It
extends the approach of the well-known GrabCut method to include machine
learning by training a neural network classifier from bounding box annotations.
We formulate the problem as an energy minimisation problem over a
densely-connected conditional random field and iteratively update the training
targets to obtain pixelwise object segmentations. Additionally, we propose
variants of the DeepCut method and compare those to a naive approach to CNN
training under weak supervision. We test its applicability to solve brain and
lung segmentation problems on a challenging fetal magnetic resonance dataset
and obtain encouraging results in terms of accuracy
A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment.
In this article, we focus on the causes of individual differences in Down syndrome (DS), exemplifying the multi-level, multi-method, lifespan developmental approach advocated by Karmiloff-Smith (1998, 2009, 2012, 2016). We evaluate the possibility of linking variations in infant and child development with variations in the (elevated) risk for Alzheimer's disease (AD) in adults with DS. We review the theoretical basis for this argument, considering genetics, epigenetics, brain, behaviour and environment. In studies 1 and 2, we focus on variation in language development. We utilise data from the MacArthur-Bates Communicative Development Inventories (CDI; Fenson et al., 2007), and Mullen Scales of Early Learning (MSEL) receptive and productive language subscales (Mullen, 1995) from 84 infants and children with DS (mean age 2;3, range 0;7 to 5;3). As expected, there was developmental delay in both receptive and expressive vocabulary and wide individual differences. Study 1 examined the influence of an environmental measure (socio-economic status as measured by parental occupation) on the observed variability. SES did not predict a reliable amount of the variation. Study 2 examined the predictive power of a specific genetic measure (apolipoprotein APOE genotype) which modulates risk for AD in adulthood. There was no reliable effect of APOE genotype, though weak evidence that development was faster for the genotype conferring greater AD risk (ε4 carriers), consistent with recent observations in infant attention (D'Souza, Mason et al., 2020). Study 3 considered the concerted effect of the DS genotype on early brain development. We describe new magnetic resonance imaging methods for measuring prenatal and neonatal brain structure in DS (e.g., volumes of supratentorial brain, cortex, cerebellar volume; Patkee et al., 2019). We establish the methodological viability of linking differences in early brain structure to measures of infant cognitive development, measured by the MSEL, as a potential early marker of clinical relevance. Five case studies are presented as proof of concept, but these are as yet too few to discern a pattern
Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI
Purpose: To develop a MRI acquisition and reconstruction framework for
volumetric cine visualisation of the fetal heart and great vessels in the
presence of maternal and fetal motion.
Methods: Four-dimensional depiction was achieved using a highly-accelerated
multi-planar real-time balanced steady state free precession acquisition
combined with retrospective image-domain techniques for motion correction,
cardiac synchronisation and outlier rejection. The framework was evaluated and
optimised using a numerical phantom, and evaluated in a study of 20 mid- to
late-gestational age human fetal subjects. Reconstructed cine volumes were
evaluated by experienced cardiologists and compared with matched ultrasound. A
preliminary assessment of flow-sensitive reconstruction using the velocity
information encoded in the phase of dynamic images is included.
Results: Reconstructed cine volumes could be visualised in any 2D plane
without the need for highly-specific scan plane prescription prior to
acquisition or for maternal breath hold to minimise motion. Reconstruction was
fully automated aside from user-specified masks of the fetal heart and chest.
The framework proved robust when applied to fetal data and simulations
confirmed that spatial and temporal features could be reliably recovered.
Expert evaluation suggested the reconstructed volumes can be used for
comprehensive assessment of the fetal heart, either as an adjunct to ultrasound
or in combination with other MRI techniques.
Conclusion: The proposed methods show promise as a framework for
motion-compensated 4D assessment of the fetal heart and great vessels
3D T2w fetal body MRI:automated organ volumetry, growth charts and population-averaged atlas
Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.</p
- …