27 research outputs found

    Large-scale releases and establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello, Medellín and Itagüí, Colombia.

    No full text
    BackgroundThe wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia.Methodology/principal findingsLocal wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas.ConclusionThese results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas

    Successful introgression of wMel Wolbachia into Aedes aegypti populations in Fiji, Vanuatu and Kiribati.

    No full text
    Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years

    Insecticide Resistance (IR) Profiles of Release Strains determined by WHO Biosaay.

    No full text
    A) Fiji release strain IR profile. B) Vanuatu release strain IR profile. C) Kiribati release strain IR profile. Each data point is the mean of five biological replicates (± s.d.) using approximately 20 mosquitoes per replicate. (TIFF)</p

    <i>w</i>Mel introgression in two areas in South Tarawa, Kiribati.

    No full text
    A) South Tarawa, Kiribati showing the two release areas: Betio (left) and Bairiki (right). B) Introgression of wMel. The line (left axis) represents the percent of Ae. aegypti tested that were infected with wMel Wolbachia, between May 2018 and December 2019. The bars (right axis) indicate the number of Ae. aegypti tested. Data points with less than five screened mosquitos have been omitted. Shaded orange areas indicate wMel mosquito release times. Map produced in QGIS version 3.16.1 using the enumeration area boundaries freely available from the Pacific Data Hub (https://pacificdata.org/data/dataset/2010_kir_phc_admin_boundaries) and OpenMapTiles basemap layer (https://openmaptiles.org/) with CARTO light design (https://carto.com/).</p

    Release & monitoring of <i>w</i>Mel-infected <i>Ae</i>. <i>aegypti</i> within six areas of Nadi and five areas of Lautoka, Fiji.

    No full text
    Each release area was divided into a grid with 100 x 100 meter squares. Grid squares lacking mosquito releases were omitted. Release gradient was determined by using GPS coordinates of each release event and assigning the number of wMel-infected mosquitos to a corresponding grid square. Monitoring numbers were determined in the same way. Map produced in QGIS version 3.16.1 using boundaries aggregated from the enumeration area boundaries freely available from the Pacific Data Hub (https://pacificdata.org/data/dataset/2007_fji_phc_admin_boundaries) and OpenMapTiles basemap layer (https://openmaptiles.org/) with CARTO light design (https://carto.com/)). (PNG)</p

    <i>w</i>Mel introgression in 12 release areas in Port Vila, Vanuatu.

    No full text
    A) Port Vila, Vanuatu showing the 12 release areas. B) wMel introgression. The line (left axis) represents the percent of Ae. aegypti screened that were infected with wMel Wolbachia, between August 2018 and May 2021. The bars (right axis) indicate the number of Ae. aegypti tested. Data points with less than five screened mosquitos have been omitted. Shaded orange areas indicate wMel mosquito release times. Map produced in QGIS version 3.16.1 using boundaries aggregated from the enumeration area boundaries freely available from the Pacific Data Hub (https://pacificdata.org/data/dataset/2016_vut_phc_admin_boundaries) and OpenMapTiles basemap layer (https://openmaptiles.org/) with CARTO light design (https://carto.com/)).</p

    DENV Prevalence in <i>Wolbachia</i>-infected Mosquitoes.

    No full text
    Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.</div

    <i>w</i>Mel introgression in six release areas in Nadi, Fiji.

    No full text
    A) Nadi, Fiji showing the six release zones. B) wMel introgression. The line (left axis) represents the percent of Ae. aegypti tested that were infected with wMel Wolbachia, between July 2019 and January 2022. The bars (right axis) indicate the number of Ae. aegypti tested. Data points with less than five tested mosquitos have been omitted. Shaded orange areas indicate wMel mosquito release times. Map produced in QGIS version 3.16.1 using boundaries aggregated from the enumeration area boundaries freely available from the Pacific Data Hub (https://pacificdata.org/data/dataset/2007_fji_phc_admin_boundaries) and OpenMapTiles basemap layer (https://openmaptiles.org/) with CARTO light design (https://carto.com/)).</p
    corecore