13 research outputs found

    The next generation of training for arabidopsis researchers: Bioinformatics and Quantitative Biology

    Get PDF
    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (Provart et al., 2016). Due to an extremely well-annotated genome and advances in high-throughput sequencing, our understanding of this organism and other plant species has become even more intricate and complex. Computational resources, including CyVerse,3 Araport,4 The Arabidopsis Information Resource (TAIR),5 and BAR,6 have further facilitated novel findings with just the click of a mouse. As we move toward understanding biological systems, Arabidopsis researchers will need to use more quantitative and computational approaches to extract novel biological findings from these data. Here, we discuss guidelines, skill sets, and core competencies that should be considered when developing curricula or training undergraduate or graduate students, postdoctoral researchers, and faculty. A selected case study provides more specificity as to the concrete issues plant biologists face and how best to address such challenges

    One hundred important questions facing plant science research

    Get PDF
    Plant biology is more important today than ever. Significant advances are required if we are to meet the escalating pressure for food, fuel, fibre and other plant products, and address the problems generated by climate change in a sustainable way, against a backdrop of an ever increasing and more prosperous human population. Scientific research has begun to focus its efforts towards these grand challenges, but it is not clear that the full range of challenges facing plant science is known or has been prioritised. What questions should the next generation of plant biologists address? Here we suggest, with brief explanations, our list of the most important questions facing plant science research today. We aim to stimulate discussion, encouraging plant scientists to think beyond the limits of their own specific sub-fields about the most important research that can conceivably be done, the most promising approaches that might successfully be applied, and the most significant discoveries that can possibly be made

    Independent Action of ELF3 and phyB to Control Hypocotyl Elongation and Flowering Time

    Get PDF
    Light regulates various aspects of plant growth, and the photoreceptor phytochrome B (phyB) mediates many responses to red light. In a screen for Arabidopsis mutants with phenotypes similar to those of phyB mutants, we isolated two new elf3 mutants. One has weaker morphological phenotypes than previously identified elf3 alleles, but still abolishes circadian rhythms under continuous light. Like phyB mutants, elf3 mutants have elongated hypocotyls and petioles, flower early, and have defects in the red light response. However, we found that elf3 mutations have an additive interaction with a phyB null mutation, with phyA or hy4 null mutations, or with a PHYB overexpression construct, and that an elf3 mutation does not prevent nuclear localization of phyB. These results suggest that either there is substantial redundancy in phyB and elf3 function, or the two genes regulate distinct signaling pathways

    Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    No full text
    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant traits important for agriculture in order to address major scientific challenges such as food security. We present three successful species and/or clade-specific ontologies which address the needs of crop scientists to quickly access a wide range of trait related data, but their scope limits their interoperability with one another. In this paper, we present our vision of a species-neutral and overarching Reference Plant Trait Ontology which would be the basis for linking the disparate knowledge domains and that will support data integration and data mining across species

    The TIME FOR COFFEE Gene Maintains the Amplitude and Timing of Arabidopsis Circadian Clocks

    Get PDF
    Plants synchronize developmental and metabolic processes with the earth's 24-h rotation through the integration of circadian rhythms and responses to light. We characterize the time for coffee (tic) mutant that disrupts circadian gating, photoperiodism, and multiple circadian rhythms, with differential effects among rhythms. TIC is distinct in physiological functions and genetic map position from other rhythm mutants and their homologous loci. Detailed rhythm analysis shows that the chlorophyll a/b-binding protein gene expression rhythm requires TIC function in the mid to late subjective night, when human activity may require coffee, in contrast to the function of EARLY-FLOWERING3 (ELF3) in the late day to early night. tic mutants misexpress genes that are thought to be critical for circadian timing, consistent with our functional analysis. Thus, we identify TIC as a regulator of the clock gene circuit. In contrast to tic and elf3 single mutants, tic elf3 double mutants are completely arrhythmic. Even the robust circadian clock of plants cannot function with defects at two different phases

    Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE

    Get PDF
    The circadian system of Arabidopsis ( Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation. ztl mutations affect both circadian and developmental responses to red light, possibly through ZTL interaction with PHYTOCHROME B (PHYB). We conducted a large-scale genetic screen that identified additional clock-affecting loci. Other mutants recovered include 11 new ztl alleles encompassing mutations in each of the ZTL protein domains. Each mutation lengthened the circadian period, even in darkgrown seedlings entrained to temperature cycles. A mutation of the LIGHT, OXYGEN, VOLTAGE (LOV)/Period-ARNT-Sim ( PAS) domain was unique in retaining wild-type responses to red light both for the circadian period and for control of hypocotyl elongation. This uncoupling of ztl phenotypes indicates that interactions of ZTL protein with multiple factors must be disrupted to generate the full ztl mutant phenotype. Protein interaction assays showed that the ztl mutant phenotypes were not fully explained by impaired interactions with previously described partner proteins Arabidopsis S-phase kinase-related protein 1, TIMING OF CAB EXPRESSION 1, and PHYB. Interaction with PHYB was unaffected by mutation of any ZTL domain. Mutation of the kelch repeat domain affected protein binding at both the LOV/PAS and the F-box domains, indicating that interaction among ZTL domains leads to the strong phenotypes of kelch mutations. Forward genetics continues to provide insight regarding both known and newly discovered components of the circadian system, although current approaches have saturated mutations at some loci

    The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana

    No full text
    Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock(1). Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition(2). Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component(3,4). In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction(5)
    corecore