284 research outputs found

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure

    Interaction of Ihh and BMP/Noggin Signaling during Cartilage Differentiation

    Get PDF
    AbstractBone morphogenetic proteins (BMPs) have been implicated in regulating multiple stages of bone development. Recently it has been shown that constitutive activation of theBMP receptor-IAblocks chondrocyte differentiation in a similar manner as misexpression ofIndian hedgehog.In this paper we analyze the role of BMPs as possible mediators of Indian hedgehog signaling and useNogginmisexpression to gain insight into additional roles of BMPs during cartilage differentiation. We show by comparative analysis ofBMPandIhhexpression domains that the borders ofIndian hedgehogexpression in the chondrocytes are reflected in changes of the expression level of severalBMPgenes in the adjacent perichondrium. We further demonstrate that misexpression ofIndian hedgehogappears to directly upregulateBMP2andBMP4expression, independent of the differentiation state of the flanking chondrocytes. In contrast, changes inBMP5andBMP7expression in the perichondrium correspond to altered differentiation states of the flanking chondrocytes. In addition,NogginandChordin,which are both expressed in the developing cartilage elements, also change their expression pattern afterIhhmisexpression. Finally, we use retroviral misexpression ofNoggin,a potent antagonist of BMP signaling, to gain insight into additional roles of BMP signaling during cartilage differentiation. We find that BMP signaling is necessary for the growth and differentiation of the cartilage elements. In addition, this analysis revealed that the members of the BMP/Noggin signaling pathway are linked in a complex autoregulatory network

    Fast and Accurate Coarsening Simulation with an Unconditionally Stable Time Step

    Full text link
    We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre's theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in phase-field modeling. We show that accuracy can be controlled with an unbounded time step Delta-t that grows with time t as Delta-t ~ t^alpha. We develop a classification scheme for the step exponent alpha and demonstrate that a class of simple linear algorithms gives alpha=1/3. For this class the speed up relative to a fixed time step grows with the linear size of the system as N/log N, and we estimate conservatively that an 8192^2 lattice can be integrated 300 times faster than with the Euler method.Comment: 14 pages, 6 figure

    Dynamical Scaling: the Two-Dimensional XY Model Following a Quench

    Full text link
    To sensitively test scaling in the 2D XY model quenched from high-temperatures into the ordered phase, we study the difference between measured correlations and the (scaling) results of a Gaussian-closure approximation. We also directly compare various length-scales. All of our results are consistent with dynamical scaling and an asymptotic growth law L(t/ln[t/t0])1/2L \sim (t/\ln[t/t_0])^{1/2}, though with a time-scale t0t_0 that depends on the length-scale in question. We then reconstruct correlations from the minimal-energy configuration consistent with the vortex positions, and find them significantly different from the ``natural'' correlations --- though both scale with LL. This indicates that both topological (vortex) and non-topological (``spin-wave'') contributions to correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure

    Determination of the Critical Point and Exponents from short-time Dynamics

    Full text link
    The dynamic process for the two dimensional three state Potts model in the critical domain is simulated by the Monte Carlo method. It is shown that the critical point can rigorously be located from the universal short-time behaviour. This makes it possible to investigate critical dynamics independently of the equilibrium state. From the power law behaviour of the magnetization the exponents β/(νz)\beta / (\nu z) and 1/(νz)1/ (\nu z) are determined.Comment: 6 pages, 4 figure

    Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics

    Full text link
    The scaling of the spatio-temporal response of coarsening systems is studied through simulations of the 2D and 3D Ising model with Glauber dynamics. The scaling functions agree with the prediction of local scale invariance, extending dynamical scaling to a space-time dynamical symmetry.Comment: Latex, 4 pages, 4 figure

    Comment on ``Phase ordering in chaotic map lattices with conserved dynamics''

    Full text link
    Angelini, Pellicoro, and Stramaglia [Phys. Rev. E {\bf 60}, R5021 (1999), cond-mat/9907149] (APS) claim that the phase ordering of two-dimensional systems of sequentially-updated chaotic maps with conserved ``order parameter'' does not belong, for large regions of parameter space, to the expected universality class. We show here that these results are due to a slow crossover and that a careful treatment of the data yields normal dynamical scaling. Moreover, we construct better models, i.e. synchronously-updated coupled map lattices, which are exempt from these crossover effects, and allow for the first precise estimates of persistence exponents in this case.Comment: 3 pages, to be published in Phys. Rev.

    Monte Carlo Simulation of the Short-time Behaviour of the Dynamic XY Model

    Full text link
    Dynamic relaxation of the XY model quenched from a high temperature state to the critical temperature or below is investigated with Monte Carlo methods. When a non-zero initial magnetization is given, in the short-time regime of the dynamic evolution the critical initial increase of the magnetization is observed. The dynamic exponent θ\theta is directly determined. The results show that the exponent θ\theta varies with respect to the temperature. Furthermore, it is demonstrated that this initial increase of the magnetization is universal, i.e. independent of the microscopic details of the initial configurations and the algorithms.Comment: 14 pages with 5 figures in postscrip
    corecore