103 research outputs found

    Targeting Multiple-Myeloma-Induced Immune Dysfunction to Improve Immunotherapy Outcomes

    Get PDF
    Multiple myeloma (MM) is a plasma cell malignancy associated with high levels of monoclonal (M) protein in the blood and/or serum. MM can occur de novo or evolve from benign monoclonal gammopathy of undetermined significance (MGUS). Current translational research into MM focuses on the development of combination therapies directed against molecularly defined targets and that are aimed at achieving durable clinical responses. MM cells have a unique ability to evade immunosurveillance through several mechanisms including, among others, expansion of regulatory T cells (Treg), reduced T-cell cytotoxic activity and responsiveness to IL-2, defects in B-cell immunity, and induction of dendritic cell (DC) dysfunction. Immune defects could be a major cause of failure of the recent immunotherapy trials in MM. This article summarizes our current knowledge on the molecular determinants of immune evasion in patients with MM and highlights how these pathways can be targeted to improve patients' clinical outcome

    Reverting Immune Suppression to Enhance Cancer Immunotherapy.

    Get PDF
    Tumors employ strategies to escape immune control. The principle aim of most cancer immunotherapies is to restore effective immune surveillance. Among the different processes regulating immune escape, tumor microenvironment-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD

    Interleukin-21 induces the differentiation of human umbilical cord blood CD34-lineage- cells into pseudomature lytic NK cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Umbilical cord blood (UCB) is enriched with transplantable CD34<sup>+ </sup>cells. In addition to CD34-expressing haematopoietic stem cells (HSC), human UCB contains a rare population of CD34<sup>-</sup>lineage<sup>- </sup>cells endowed with the ability to differentiate along the T/NK pathway in response to interleukin (IL)-15 and a stromal cell support. IL-21 is a crucial regulator of NK cell function, whose influence on IL-15-induced differentiation of CD34<sup>-</sup>lineage<sup>- </sup>cells has not been investigated previously. The present study was designed and conducted to address whether IL-21 might replace the stromal cell requirements and foster the IL-15-induced NK differentiation of human UCB CD34<sup>-</sup>lineage<sup>- </sup>cells.</p> <p>Results</p> <p>CD34<sup>-</sup>lineage<sup>- </sup>cells were maintained in liquid culture with Flt3-L and SCF, with the addition of IL-15 and IL-21, either alone or in combination. Cultures were established in the absence of feeder cells or serum supplementation. Cytokine-treated cells were used to evaluate cell surface phenotype, expression of molecular determinants of lymphoid/NK cell differentiation, secretion of IFN-γ, GM-CSF, TNF-α and CCL3/MIP-1α, and cytolytic activity against NK-sensitive tumour cell targets. CD34<sup>-</sup>lineage<sup>- </sup>cells proliferated vigorously in response to IL-15 and IL-21 but not to IL-21 alone, and up-regulated phosphorylated Stat1 and Stat3 proteins. CD34<sup>-</sup>lineage<sup>- </sup>cells expanded by IL-21 in combination with IL-15 acquired lymphoid morphology and killer-cell immunoglobulin-like receptor (KIR)<sup>-</sup>CD56<sup>+</sup>CD16<sup>-/+ </sup>phenotype, consistent with pseudo-mature NK cells. IL-21/IL-15-differentiated cells expressed high levels of mRNA for Bcl-2, GATA-3 and Id2, a master switch required for NK-cell development, and harboured un-rearranged TCRγ genes. From a functional standpoint, IL-21/IL-15-treated cells secreted copious amounts of IFN-γ, GM-CSF and CCL3/MIP-1α, and expressed cell surface CD107a upon contact with NK-sensitive tumour targets, a measure of exocytosis of NK secretory granules.</p> <p>Conclusion</p> <p>This study underpins a novel role for IL-21 in the differentiation of pseudo-mature lytic NK cells in a synergistic context with IL-15, and identifies a potential strategy to expand functional NK cells for immunotherapy.</p

    Effects of pegylated G-CSF on immune cell number and function in patients with gynecological malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pegylated granulocyte colony-stimulating factor (G-CSF; pegfilgrastim) is a longer-acting form of G-CSF, whose effects on dendritic cell (DC) and regulatory T cell (Treg) mobilization, and on the <it>in vivo </it>and ex vivo release of immune modulating cytokines remain unexplored.</p> <p>Methods</p> <p>Twelve patients with gynecological cancers received carboplatin/paclitaxel chemotherapy and single-dose pegfilgrastim as prophylaxis of febrile neutropenia. Peripheral blood was collected prior to pegfilgrastim administration (day 0) and on days +7, +11 and +21, to quantify immunoregulatory cytokines and to assess type 1 DC (DC1), type 2 DC (DC2) and Treg cell mobilization. <it>In vitro</it>-differentiated, monocyte-derived DC were used to investigate endocytic activity, expression of DC maturation antigens and ability to activate allogeneic T-cell proliferation.</p> <p>Results</p> <p>Pegfilgrastim increased the frequency of circulating DC1 and DC2 precursors. In contrast, CD4<sup>+</sup>FoxP3<sup>+ </sup><it>bona fide </it>Treg cells were unchanged compared with baseline. Serum levels of hepatocyte growth factor and interleukin (IL)-12p40, but not transforming growth factor-β1 or immune suppressive kynurenines, significantly increased after pegfilgrastim administration. Interestingly, pegfilgrastim fostered <it>in vitro</it> monocytic<it/> secretion of IL-12p40 and IL-12p70 when compared with unconjugated G-CSF. Finally, DC populations differentiated <it>in vitro </it>after clinical provision of pegfilgrastim were phenotypically mature, possessed low endocytic activity, and incited a robust T-cell proliferative response.</p> <p>Conclusions</p> <p>Pegfilgrastim induced significant changes in immune cell number and function. The enhancement of monocytic IL-12 secretion portends favorable implications for pegfilgrastim administration to patients with cancer, a clinical context where the induction of immune deviation would be highly undesirable.</p

    Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK) cells in clinical-grade cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytokine-induced killer (CIK) cells are typically differentiated <it>in vitro </it>with interferon (IFN)-γ and αCD3 monoclonal antibodies (mAb), followed by the repeated provision of interleukin (IL)-2. It is presently unknown whether thymoglobulin (TG), a preparation of polyclonal rabbit γ immunoglobulins directed against human thymocytes, can improve the generation efficiency of CIK cells compared with αCD3 mAb in a clinical-grade culture protocol.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells (PBMC) from 10 healthy donors and 4 patients with solid cancer were primed with IFN-γ on day 0 and low (50 ng/ml), intermediate (250 ng/ml) and high (500 ng/ml) concentrations of either αCD3 mAb or TG on day 1, and were fed with IL-2 every 3 days for 21 days. Aliquots of cells were harvested weekly to monitor the expression of representative members of the killer-like immunoglobulin receptor (KIR), NK inhibitory receptor, NK activating receptor and NK triggering receptor families. We also quantified the frequency of <it>bona fide </it>regulatory T cells (Treg), a T-cell subset implicated in the down-regulation of anti-tumor immunity, and tested the <it>in vitro </it>cytotoxic activity of CIK cells against NK-sensitive, chronic myeloid leukaemia K562 cells.</p> <p>Results</p> <p>CIK cells expanded more vigorously in cultures supplemented with intermediate and high concentrations of TG compared with 50 ng/ml αCD3 mAb. TG-driven CIK cells expressed a constellation of NK activating/inhibitory receptors, such as CD158a and CD158b, NKp46, NKG2D and NKG2A/CD94, released high quantities of IL-12p40 and efficiently lysed K562 target cells. Of interest, the frequency of Treg cells was lower at any time-point compared with PBMC cultures nurtured with αCD3 mAb. Cancer patient-derived CIK cells were also expanded after priming with TG, but they expressed lower levels of the NKp46 triggering receptor and NKG2D activating receptor, thus manifesting a reduced ability to lyse K562 cells.</p> <p>Conclusions</p> <p>TG fosters the generation of functional CIK cells with no concomitant expansion of tumor-suppressive Treg cells. The culture conditions described herein should be applicable to cancer-bearing individuals, although the differentiation of fully functional CIK cells may be hindered in patients with advanced malignancies.</p

    Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19-depleted haploidentical stem cell grafts

    Get PDF
    Background: HLA-haploidentical hematopoietic stem cell transplantation (HSCT) is suitable for patients lacking related or unrelated HLA-matched donors. Herein, we investigated whether plerixafor (MZ), as an adjunct to G-CSF, facilitated the collection of mega-doses of hematopoietic stem cells (HSC) for TCR-αβ/CD19-depleted haploidentical HSCT, and how this agent affects the cellular graft composition. Methods: Ninety healthy donors were evaluated. Single-dose MZ was given to 30 ‘poor mobilizers’ (PM) failing to attain ≥40 CD34+ HSCs/μL after 4 daily G-CSF doses and/or with predicted apheresis yields ≤12.0x106 CD34+ cells/kg recipient’s body weight. Results: MZ significantly increased CD34+ counts in PM. Naïve/memory T and B cells, as well as natural killer (NK) cells, myeloid/plasmacytoid dendritic cells (DCs), were unchanged compared with baseline. MZ did not further promote the G-CSF-induced mobilization of CD16+ monocytes and the down-regulation of IFN-γ production by T cells. HSC grafts harvested after G-CSF + MZ were enriched in myeloid and plasmacytoid DCs, but contained low numbers of pro-inflammatory 6-sulfo-LacNAc+ (Slan)-DCs. Finally, children transplanted with G-CSF + MZ-mobilized grafts received greater numbers of monocytes, myeloid and plasmacytoid DCs, but lower numbers of NK cells, NK-like T cells and Slan-DCs. Conclusions: MZ facilitates the collection of mega-doses of CD34+ HSCs for haploidentical HSCT, while affecting graft composition

    Immune-Phenotyping and Transcriptomic Profiling of Peripheral Blood Mononuclear Cells From Patients With Breast Cancer: Identification of a 3 Gene Signature Which Predicts Relapse of Triple Negative Breast Cancer

    Get PDF
    Background: Interactions between the immune system and tumors are highly reciprocal in nature, leading to speculation that tumor recurrence or therapeutic resistance could be influenced or predicted by immune events that manifest locally, but can be detected systemically.Methods: Multi-parameter flow cytometry was used to examine the percentage and phenotype of natural killer (NK) cells, myeloid-derived suppressor cells (MDSCs), monocyte subsets and regulatory T (Treg) cells in the peripheral blood of of 85 patients with breast cancer (50 of whom were assessed before and after one cycle of anthracycline-based chemotherapy), and 23 controls. Transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) in 23 patients were generated using a NanoString gene profiling platform.Results: An increased percentage of immunosuppressive cells such as granulocytic MDSCs, intermediate CD14++CD16+ monocytes and CD127negCD25highFoxP3+ Treg cells was observed in patients with breast cancer, especially patients with stage 3 and 4 disease, regardless of ER status. Following neoadjuvant chemotherapy, B cell numbers decreased significantly, whereas monocyte numbers increased. Although chemotherapy had no effect on the percentage of Treg, MDSC and NK cells, the expression of inhibitory receptors CD85j, LIAR and NKG2A and activating receptors NKp30 and NKp44 on NK cells increased, concomitant with a decreased expression of NKp46 and DNAM-1 activating receptors. Transcriptomic profiling revealed a distinct group of 3 patients in the triple negative breast cancer (TNBC) cohort who expressed high levels of mRNA encoding genes predominantly involved in inflammation. The analysis of a large transcriptomic dataset derived from the tumors of patients with TNBC revealed that the expression of CD163, CXCR4, THBS1 predicted relapse-free survival.Conclusions: The peripheral blood immunome of patients with breast cancer is influenced by the presence and stage of cancer, but not by molecular subtypes. Furthermore, immune profiling coupled with transcriptomic analyses of peripheral blood cells may identify patients with TNBC that are at risk of relapse after chemotherapy
    corecore