4 research outputs found

    Chloroacetaldehyde-induced mutagenesis in Escherichia coli: the role of AlkB protein in repair of 3,N4-ethenocytosine and 3,N4-α-hydroxyethanocytosine

    Get PDF
    Etheno () adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate -adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of -adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (C.G. Cupples, J.H. Miller. Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 5345-5349) which allowed to monitor Lac+ revertants, the latter arose by GCAT or GCTA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in E. coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of C proceeds via a relatively stable intermediate, 3,N4--hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA+, alkB+, and mug+ controls. Considering the levels of CAA-induced Lac+ revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of C and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs C and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and εC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein

    miRNA Regulatory Networks Associated with Peripheral Vascular Diseases

    No full text
    A growing body of evidence indicates a crucial role of miRNA regulatory function in a variety of mechanisms that contribute to the development of diseases. In our previous work, alterations in miRNA expression levels and targeted genes were shown in peripheral blood mononuclear cells (PBMCs) from patients with lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA), and chronic venous disease (CVD) in comparison with healthy controls. In this paper, previously obtained miRNA expression profiles were compared between the LEAD, AAA, and CVD groups to find either similarities or differences within the studied diseases. Differentially expressed miRNAs were identified using the DESeq2 method implemented in the R programming software. Pairwise comparisons (LEAD vs. AAA, LEAD vs. CVD, and AAA vs. CVD) were performed and revealed 10, 8, and 17 differentially expressed miRNA transcripts, respectively. The functional analysis of the obtained miRNAs was conducted using the miRNet 2.0 online tool and disclosed associations with inflammation and cellular differentiation, motility, and death. The miRNet 2.0 tool was also used to identify regulatory interactions between dysregulated miRNAs and target genes in patients with LEAD, AAA, and CVD. The presented research provides new information about similarities and differences in the miRNA-dependent regulatory mechanisms involved in the pathogenesis of LEAD, AAA, and CVD

    Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease

    No full text
    Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair–related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases
    corecore