29 research outputs found

    Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans.

    No full text
    At frequencies as high as 1.4%, the pathogenic yeast Candida albicans spontaneously gave rise to morphological mutants exhibiting more than 20 different types of abnormal colonies; approximately two-thirds of the mutants were stable, while the other one-third were unstable and produced mixtures of different colonial forms at very high rates. Abnormal electrophoretic karyotypes were observed for all of the 14 mutants that were examined, indicating that they were associated with different types of single and multiple gross chromosomal rearrangements. Because C. albicans is asexual and does not go through a meiotic cycle, we suggest that the high frequency of chromosomal rearrangements provides a means for genetic variation in this organism

    Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification.

    No full text
    Several different repetitive DNA sequences have been isolated from the pathogenic yeast Candida albicans. These include two families of large dispersed repeat sequences (Ca3, Ca24) and a short (23-bp) tandemly repeated element (Ca7) associated with C. albicans telomeres. In addition, a large subtelomeric repeat (WOL17) has been cloned. DNA fragments containing the telomeric repeats are highly variable among different C. albicans strains. We have shown that the Ca3 repeat is relatively more stable and is suitable for use as a species-specific and strain-specific probe for C. albicans
    corecore