7 research outputs found

    Effectiveness of empirical <i>Helicobacter pylori</i> eradication therapy with furazolidone in Russia: results from the European Registry on <i>Helicobacter pylori</i> Management (Hp-EuReg)

    Get PDF
    Background. First-line therapy does not always provide a high level of Helicobacter pylori eradication due to the increase of H. pylori resistance to antibiotics; therefore, it remains necessary to identify the most effective rescue treatments. The purpose of this study was to evaluate the efficacy and safety of empirical H. pylori furazolidone-containing regimens. Materials and methods. Adult H. pylori infected patients empirically treated with furazolidone-containing eradication regimens were registered in an international, prospective, multicenter non-intervention European registry on H. pylori management (Hp-EuReg). Data were collected at AEG-REDCap e-CRF from 2013 to 2021 and the quality was reviewed. Modified intention-to-treat (mITT) effectiveness analyses were performed. Results. Overall 106 patients received empirical furazolidone-containing therapy in Russia. Furazolidone was prescribed in a sequential scheme along with amoxicillin, clarithromycin and a proton pump inhibitor in 68 (64%) cases, triple regimens were prescribed in 28 (26%) patients and quadruple regimens in 10 (9.4%). Treatment duration of 7 days was assigned to 2 (1.9%) patients, 10-day eradication therapy in case of 80 (75%) and 14 days in 24 (23%) patients. Furazolidone was mainly used in first- (79%) and second-line (21%) regimens. The methods used to diagnose H. pylori infection were: histology (81%), stool antigen test (64%), 13C-urea breath test (6.6%), and rapid urease test (1.9%). The mITT effectiveness of sequential therapy was 100%; 93% with the triple therapy and 75.5% with quadruple therapy. Compliance was reported in 98% of cases. Adverse events were revealed in 5.7% of patients, mostly nausea (3.8%). No serious adverse events were reported. Conclusion. Furazolidone containing eradication regimens appear to be an effective and safe empirical therapy in Russia

    Shotgun metagenomic data on the human stool samples to characterize shifts of the gut microbial profile after the Helicobacter pylori eradication therapy

    No full text
    The shotgun sequencing data presented in this report are related to the research article named “Gut microbiome shotgun sequencing in assessment of microbial community changes associated with H. pylori eradication therapy” (Khusnutdinova et al., 2016) [1]. Typically, the H. pylori eradication protocol includes a prolonged two-week use of the broad-spectrum antibiotics. The presented data on the whole-genome sequencing of the total DNA from stool samples of patients before the start of the eradication, immediately after eradication and several weeks after the end of treatment could help to profile the gut microbiota both taxonomically and functionally. The presented data together with those described in Glushchenko et al. (2017) [2] allow researchers to characterize the metagenomic profiles in which the use of antibiotics could result in dramatic changes in the intestinal microbiota composition. We perform 15 gut metagenomes from 5 patients with H. pylori infection, obtained through the shotgun sequencing on the SOLiD 5500 W platform. Raw reads are deposited in the ENA under project ID PRJEB21338

    Diversity and Adaptations of Escherichia coli Strains: Exploring the Intestinal Community in Crohn’s Disease Patients and Healthy Individuals

    No full text
    Crohn’s disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenome-assembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage

    Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease

    No full text
    Abstract Background Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative “shotgun” metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts—with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. Results Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis—with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus—but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of functional potential, the patients showed different patterns of increase in functions related to alcohol metabolism and virulence factors, as well as pathways related to inflammation. Conclusions Multiple shifts in the community structure and metabolic potential suggest strong negative influence of alcohol dependence and associated liver dysfunction on gut microbiota. The identified differences in patterns of impact between these two factors are important for planning of personalized treatment and prevention of these pathologies via microbiota modulation. Particularly, the expansion of Bifidobacterium and Lactobacillus suggests that probiotic interventions for patients with alcohol-related disorders using representatives of the same taxa should be considered with caution. Taxonomic and functional analysis shows an increased propensity of the gut microbiota to synthesis of the toxic acetaldehyde, suggesting higher risk of colorectal cancer and other pathologies in alcoholics

    Data on gut metagenomes of the patients with alcoholic dependence syndrome and alcoholic liver cirrhosis

    No full text
    Alcoholism is associated with significant changes in gut microbiota composition. Metagenomic sequencing allows to assess the altered abundance levels of bacterial taxa and genes in a culture-independent way. We collected 99 stool samples from the patients with alcoholic dependence syndrome (n=72) and alcoholic liver cirrhosis (n=27). Each of the samples was surveyed using “shotgun” (whole-genome) sequencing on SOLiD platform. The reads are deposited in the ENA (project ID: PRJEB18041)

    Role of proton pump inhibitors dosage and duration in Helicobacter pylori eradication treatment: Results from the European Registry on H. pylori management

    No full text
    Background: Management of Helicobacter pylori (H. pylori) infection requires co-treatment with proton pump inhibitors (PPIs) and the use of antibiotics to achieve successful eradication.Aim: To evaluate the role of dosage of PPIs and the duration of therapy in the effectiveness of H. pylori eradication treatments based on the 'European Registry on Helicobacter pylori management' (Hp-EuReg).Methods: Hp-EuReg is a multicentre, prospective, non-interventionist, international registry on the routine clinical practice of H. pylori management by European gastroenterologists. All infected adult patients were systematically registered from 2013 to 2022.Results: Overall, 36,579 patients from five countries with more than 1000 patients were analysed. Optimal (&gt;= 90%) first-line-modified intention-to-treat effectiveness was achieved with the following treatments: (1) 14-day therapies with clarithromycin-amoxicillin-bismuth and metronidazole-tetracycline-bismuth, both independently of the PPI dose prescribed; (2) All 10-day (except 10-day standard triple therapy) and 14-day therapies with high-dose PPIs; and (3) 10-day quadruple therapies with clarithromycin-amoxicillin-bismuth, metronidazole-tetracycline-bismuth, and clarithromycin-amoxicillin-metronidazole (sequential), all with standard-dose PPIs. In first-line treatment, optimal effectiveness was obtained with high-dose PPIs in all 14-day treatments, in 10- and 14-day bismuth quadruple therapies and in 10-day sequential with standard-dose PPIs. Optimal second-line effectiveness was achieved with (1) metronidazole-tetracycline-bismuth quadruple therapy for 14- and 10 days with standard and high-dose PPIs, respectively; and (2) levofloxacin-amoxicillin triple therapy for 14 days with high-dose PPIs. None of the 7-day therapies in both treatment lines achieved optimal effectiveness.Conclusions: We recommend, in first-line treatment, the use of high-dose PPIs in 14-day triple therapy and in 10-or 14-day quadruple concomitant therapy in first-line treatment, while standard-dose PPIs would be sufficient in 10-day bismuth quadruple therapies. On the other hand, in second-line treatment, high-dose PPIs would be more beneficial in 14-day triple therapy with levofloxacin and amoxicillin or in 10-day bismuth quadruple therapy either as a three-in-one single capsule or in the traditional scheme
    corecore