50 research outputs found

    Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use

    Get PDF
    BACKGROUND: The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO(2 )from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO(2 )emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC). RESULTS: Due to the measurement of the CO(2 )flux in two hours intervals, the dynamics of CO(2 )emission during freezing-thawing events was described in a detailed way. At +10°C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m(-2)h(-1 )depending on land use and moisture. CO(2 )flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5°C. Significant burst of CO(2 )emission (1.2–1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO(2 )emission and soil temperature (R(2 )= 0.86–0.97, P < 0.001). CONCLUSION: Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO(2 )dynamics and extra CO(2 )fluxes. As a rule, the emissions of CO(2 )induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO(2 )emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora

    PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence

    Get PDF
    Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism, secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates

    Meta-analysis and the science of research synthesis

    Get PDF
    Meta-analysis is the quantitative, scientific synthesis of research results. Since the term and modern approaches to research synthesis were first introduced in the 1970s, meta-analysis has had a revolutionary effect in many scientific fields, helping to establish evidence-based practice and to resolve seemingly contradictory research outcomes. At the same time, its implementation has engendered criticism and controversy, in some cases general and others specific to particular disciplines. Here we take the opportunity provided by the recent fortieth anniversary of meta-analysis to reflect on the accomplishments, limitations, recent advances and directions for future developments in the field of research synthesis

    Creation of Software within the Academic Context: Knowledge Transfer, Intellectual Property Rights, and Licences

    Get PDF
    Using the method of comparative analysis, this paper explores different legal issues related to software management within universities. It is organized in two sections. The first section will deal with the crucial issue of ownership of intellectual property rights in copyrights and patents, outlining the discussion with reference to the specific objective of this review. The regulatory framework in this field, which is often opaque due to the different regulations that characterize the diverse forms of intellectual property rights, is made even more incomprehensible by providing different legal regimes according to the status of the person who has carried out the research (professors, lecturers, fellows, graduate students, etc.). The second section provides an explanation of the role that contract law, and specifically licensing, has in the exploitation of software. Finally, considerations of a general nature will be developed and some operational solutions proposed, primarily aimed at emphasizing the importance of a systematic approach to the transfer of knowledge in a university environment
    corecore