138 research outputs found
Plant chemical genetics : from phenotype-based screens to synthetic biology
The treatment of a biological system with small molecules to specifically perturb cellular functions is commonly referred to as chemical biology. Small molecules are used commercially as drugs, herbicides, and fungicides in different systems, but in recent years they are increasingly exploited as tools for basic research. For instance, chemical genetics involves the discovery of small-molecule effectors of various cellular functions through screens of compound libraries. Whereas the drug discovery field has largely been driven by target-based screening approaches followed by drug optimization, chemical genetics in plant systems tends to be fueled by more general phenotype-based screens, opening the possibility to identify a wide range of small molecules that are not necessarily directly linked to the process of interest. Here, we provide an overview of the current progress in chemical genetics in plants, with a focus on the discoveries regarding small molecules identified in screens designed with a basic biology perspective. We reflect on the possibilities that lie ahead and discuss some of the potential pitfalls that might be encountered upon adopting a given chemical genetics approach
Target identification strategies in plant chemical biology
The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starting blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, whereas studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology
Boosting crop yields with plant steroids
Plant sterols and steroid hormones, the brassinosteroids (BRs), are compounds that exert a wide range of biological activities. They are essential for plant growth, reproduction, and responses to various abiotic and biotic stresses. Given the importance of sterols and BRs in these processes, engineering their biosynthetic and signaling pathways offers exciting potentials for enhancing crop yield. In this review, we focus on how alterations in components of sterol and BR metabolism and signaling or application of exogenous steroids and steroid inhibitors affect traits of agronomic importance. We also discuss areas for future research and identify the fine-tuning modulation of endogenous BR content as a promising strategy for crop improvement
The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis
The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family of plasma membrane receptors consists of five closely related members. The SERK1 and SERK2 genes show a complex expression pattern throughout development. Both are expressed in anther primordia up to the second parietal division. After this point, expression ceases in the sporocytes and is continued in the tapetum and middle layer precursors. Single knockout mutants of SERK1 and SERK2 show no obvious phenotypes. Double mutants of SERK1 and SERK2 are completely male sterile due to a failure in tapetum specification. Fertility can be restored by a single copy of either gene. The SERK1 and SERK2 proteins can form homodimers or heterodimers in vivo, suggesting they are interchangeable in the SERK1/SERK2 signaling comple
Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis
End-binding 1 (EB1) proteins are evolutionarily conserved plus-end-tracking proteins that localize to growing microtubule plus ends where they regulate microtubule dynamics and interactions with intracellular targets. Animal EB1 proteins have acidic C-terminal tails that might induce an autoinhibitory conformation. Although EB1 proteins with the same structural features occur in plants (EB1a and EB1b in Arabidopsis thaliana), a variant form (EB1c) is present that lacks the characteristic tail. We show that in Arabidopsis the tail region of EB1b, but not of EB1c, inhibits microtubule assembly in vitro. EB1a and EB1b form heterodimers with each other, but not with EB1c. Furthermore, the EB1 genes are expressed in various cell types of Arabidopsis, but the expression of EB1c is particularly strong in the meristematic cells where it is targeted to the nucleus by a nuclear localization signal in the C-terminal tail. Reduced expression of EB1c compromised the alignment of spindle and phragmoplast microtubules and caused frequent lagging of separating chromosomes at anaphase. Roots of the eb1c mutant were hypersensitive to a microtubule-disrupting drug and complete rescue of the mutant phenotype required the tail region of EB1c. These results suggest that a plant-specific EB1 subtype has evolved to function preferentially on the spindle microtubules by accumulating in the prophase nucleus
- …