44 research outputs found

    Open Access in Interdisciplinary Fields

    No full text
    Presentation by Russell Schwartz, a professor in Biological Sciences and SCS on how and why to persuade scholarly societies to transition to open access publishing.</p

    Computational biology and bioinformatics.

    No full text
    <p>This special issue of Bioinformatics serves as the proceedings of the 22nd annual meeting of Intelligent Systems for Molecular Biology (ISMB), which took place in Boston, MA, July 11–15, 2014 (http://www.iscb.org/ismbeccb2014).</p

    Stochastic steady state gain in a gene expression process with mRNA degradation control.

    No full text
    <p>Recent analyses with high-resolution single-molecule experimental methods have shown highly irregular and variable bursting of mRNA in a wide range of organisms. Noise in gene expression is thought to be beneficial in cell fate specifications, as it can lay a foundation for phenotypic diversification of isogenetic cells in the homogeneous environment. However, because the stability of proteins is, in many cases, higher than that of mRNAs, noise from transcriptional bursting can be considerably buffered at the protein level, limiting the effect of noisy mRNAs at a more global regulation level. This raises a question as to what constructive role noisy mRNAs can play in the system-level dynamics. In this study, we have addressed this question using the computational models that extend the conventional transcriptional bursting model with a post-transcriptional regulation step. Surprisingly, by comparing this stochastic model with the corresponding deterministic model, we find that intrinsic fluctuations can substantially increase the expected mRNA level. Because effects of a higher mRNA level can be transmitted to the protein level even with slow protein degradation rates, this finding suggests that an increase in the protein level is another potential effect of transcriptional bursting. Here, we show that this striking steady state increase is caused by the asynchronous nature of molecular reactions, which allows the transcriptional regulation model to create additional modes of qualitatively distinct dynamics. Our results illustrate non-intuitive effects of reaction asynchronicity on system dynamics that cannot be captured by the traditional deterministic framework. Because molecular reactions are intrinsically stochastic and asynchronous, these findings may have broad implications in modelling and understanding complex biological systems.</p

    Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure.

    No full text
    Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried alpha helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns.</p

    Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics.

    No full text
    The process by which hundreds of identical capsid proteins self-assemble into icosahedral structures is complex and poorly understood. Establishing constraints on the assembly pathways is crucial to building reliable theoretical models. For example, it is currently an open question to what degree overall assembly kinetics are dominated by one or a few most efficient pathways versus the enormous number theoretically possible. The importance of this question, however, is often overlooked due to the difficulties of addressing it in either theoretical or experimental practice. We apply a computer model based on a discrete-event simulation method to evaluate the contributions of nondominant pathways to overall assembly kinetics. This is accomplished by comparing two possible assembly models: one allowing growth to proceed only by the accretion of individual assembly subunits and the other allowing the binding of sterically compatible assembly intermediates any sizes. Simulations show that the two models perform almost identically under low binding rate conditions, where growth is strongly nucleation-limited, but sharply diverge under conditions of higher association rates or coat protein concentrations. The results suggest the importance of identifying the actual binding pattern if one is to build reliable models of capsid assembly or other complex self-assembly processes.</p

    Applying unmixing to gene expression data for tumor phylogeny inference.

    No full text
    BACKGROUND: While in principle a seemingly infinite variety of combinations of mutations could result in tumor development, in practice it appears that most human cancers fall into a relatively small number of "sub-types," each characterized a roughly equivalent sequence of mutations by which it progresses in different patients. There is currently great interest in identifying the common sub-types and applying them to the development of diagnostics or therapeutics. Phylogenetic methods have shown great promise for inferring common patterns of tumor progression, but suffer from limits of the technologies available for assaying differences between and within tumors. One approach to tumor phylogenetics uses differences between single cells within tumors, gaining valuable information about intra-tumor heterogeneity but allowing only a few markers per cell. An alternative approach uses tissue-wide measures of whole tumors to provide a detailed picture of averaged tumor state but at the cost of losing information about intra-tumor heterogeneity. RESULTS: The present work applies "unmixing" methods, which separate complex data sets into combinations of simpler components, to attempt to gain advantages of both tissue-wide and single-cell approaches to cancer phylogenetics. We develop an unmixing method to infer recurring cell states from microarray measurements of tumor populations and use the inferred mixtures of states in individual tumors to identify possible evolutionary relationships among tumor cells. Validation on simulated data shows the method can accurately separate small numbers of cell states and infer phylogenetic relationships among them. Application to a lung cancer dataset shows that the method can identify cell states corresponding to common lung tumor types and suggest possible evolutionary relationships among them that show good correspondence with our current understanding of lung tumor development. CONCLUSIONS: Unmixing methods provide a way to make use of both intra-tumor heterogeneity and large probe sets for tumor phylogeny inference, establishing a new avenue towards the construction of detailed, accurate portraits of common tumor sub-types and the mechanisms by which they develop. These reconstructions are likely to have future value in discovering and diagnosing novel cancer sub-types and in identifying targets for therapeutic development.</p

    A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly.

    No full text
    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.</p

    Exploring the parameter space of complex self-assembly through virus capsid models.

    No full text
    We use discrete event stochastic simulations to characterize the parameter space of a model of icosahedral viral capsid assembly as functions of monomer-monomer binding rates. The simulations reveal a parameter space characterized by three major assembly mechanisms, a standard nucleation-limited monomer-accretion pathway and two distinct hierarchical assembly pathways, as well as unproductive regions characterized by kinetically trapped species. Much of the productive parameter space also consists of border regions between these domains where hybrid pathways are likely to operate. A simpler octamer system studied for comparison reveals three analogous pathways, but is characterized by much lesser sensitivity to parameter variations in contrast to the sharp changes visible in the icosahedral model. The model suggests that modest changes in assembly conditions, consistent with expected differences between in vitro and in vivo assembly environments, could produce substantial shifts in assembly pathways. These results suggest that we must be cautious in drawing conclusions about in vivo capsid self-assembly dynamics from theoretical or in vitro models, as the nature of the basic assembly mechanisms accessible to a system can substantially differ between simple and complex model systems, between theoretical models and simulation results, and between in vitro and in vivo assembly conditions.</p

    Three-dimensional stochastic off-lattice model of binding chemistry in crowded environments.

    No full text
    <p>Molecular crowding is one of the characteristic features of the intracellular environment, defined by a dense mixture of varying kinds of proteins and other molecules. Interaction with these molecules significantly alters the rates and equilibria of chemical reactions in the crowded environment. Numerous fundamental activities of a living cell are strongly influenced by the crowding effect, such as protein folding, protein assembly and disassembly, enzyme activity, and signal transduction. Quantitatively predicting how crowding will affect any particular process is, however, a very challenging problem because many physical and chemical parameters act synergistically in ways that defy easy analysis. To build a more realistic model for this problem, we extend a prior stochastic off-lattice model from two-dimensional (2D) to three-dimensional (3D) space and examine how the 3D results compare to those found in 2D. We show that both models exhibit qualitatively similar crowding effects and similar parameter dependence, particularly with respect to a set of parameters previously shown to act linearly on total reaction equilibrium. There are quantitative differences between 2D and 3D models, although with a generally gradual nonlinear interpolation as a system is extended from 2D to 3D. However, the additional freedom of movement allowed to particles as thickness of the simulation box increases can produce significant quantitative change as a system moves from 2D to 3D. Simulation results over broader parameter ranges further show that the impact of molecular crowding is highly dependent on the specific reaction system examined.</p

    Unified regression model of binding equilibria in crowded environments.

    No full text
    Molecular crowding is a critical feature distinguishing intracellular environments from idealized solution-based environments and is essential to understanding numerous biochemical reactions, from protein folding to signal transduction. Many biochemical reactions are dramatically altered by crowding, yet it is extremely difficult to predict how crowding will quantitatively affect any particular reaction systems. We previously developed a novel stochastic off-lattice model to efficiently simulate binding reactions across wide parameter ranges in various crowded conditions. We now show that a polynomial regression model can incorporate several interrelated parameters influencing chemistry under crowded conditions. The unified model of binding equilibria accurately reproduces the results of particle simulations over a broad range of variation of six physical parameters that collectively yield a complicated, non-linear crowding effect. The work represents an important step toward the long-term goal of computationally tractable predictive models of reaction chemistry in the cellular environment.</p
    corecore