15 research outputs found

    Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Get PDF
    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN

    Efficacy and Safety of Azithromycin-Chloroquine versus Sulfadoxine-Pyrimethamine for Intermittent Preventive Treatment of Plasmodium falciparum Malaria Infection in Pregnant Women in Africa: An Open-Label, Randomized Trial.

    No full text
    The World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) in African regions with moderate to high malaria transmission. However, growing resistance to SP threatens the effectiveness of IPTp-SP, and alternative drugs are needed. This study tested the efficacy, tolerability, and safety of a fixed-dose combination azithromycin-chloroquine (AZCQ; 250 mg AZ/155 mg CQ base) for IPTp relative to IPTp-SP.A randomized, Phase 3, open-label, multi-center study was conducted in sub-Saharan Africa (Benin, Kenya, Malawi, Tanzania, and Uganda) between October 2010 and November 2013. Pregnant women received 3 IPTp courses with AZCQ (each course: 1,000/620 mg AZCQ QD for 3 days) or SP (each course 1,500/75 mg SP QD for 1 day) at 4- to 8-week intervals during the second and third trimester. Long-lasting insecticide-treated bednets were also provided at enrollment. Study participants were followed up until day 28 post delivery (time window: day 28-42). The primary endpoint was the proportion of participants with sub-optimal pregnancy outcomes (a composite endpoint comprising live-borne neonates with low birth weight [LBW, 28 weeks], abortion [≤28 weeks], lost to follow-up prior to observation of pregnancy outcome, or missing birth weight). The study was terminated early after recruitment of 2,891 of the planned 5,044 participants, due to futility observed in a pre-specified 35% interim analysis. In the final intent-to-treat dataset, 378/1,445 (26.2%) participants in the AZCQ and 342/1,445 (23.7%) in the SP group had sub-optimal pregnancy outcomes, with an estimated risk ratio (RR) of 1.11 (95% CI: 0.97, 1.25; p = 0.12). There was no significant difference in the incidence of LBW between treatment groups (57/1138 [5.0%] in the AZCQ group, 68/1188 [5.7%] in the SP group, RR 0.87 [95% CI: 0.62, 1.23]; p = 0.44). IPTp-AZCQ was less well-tolerated in mothers than IPTp-SP. Occurrences of congenital anomalies, deaths, and serious adverse events were comparable in neonates for both groups. Limitations included the open-label design and early study termination.IPTp-AZCQ was not superior to IPTp-SP in this study and alternatives for IPTp-SP remain to be identified. The proportions of sub-optimal pregnancy outcomes and LBW were lower than expected, which may be linked to insecticide-treated bednet use throughout the study. Reduced incidences of symptomatic malaria infection and peripheral parasitemia in the AZCQ group relative to SP suggest that AZCQ warrants further investigation as an alternative treatment of uncomplicated malaria.ClinicalTrials.gov (NCT01103063)

    Multiple-level stakeholder engagement in malaria clinical trials: addressing the challenges of conducting clinical research in resource-limited settings

    No full text
    Abstract Background Multinational clinical trials are logistically complex and require close coordination between various stakeholders. They must comply with global clinical standards and are accountable to multiple regulatory and ethical bodies. In resource-limited settings, it is challenging to understand how to apply global clinical standards to international, national, and local factors in clinical trials, making multiple-level stakeholder engagement an important element in the successful conduct of these clinical trials. Main body During the planning and implementation of a large multinational clinical trial for intermittent preventive treatment of malaria in pregnancy in resource-limited areas of sub-Saharan Africa, we encountered numerous challenges, which required implementation of a range of engagement measures to ensure compliance with global clinical and regulatory standards. These challenges included coordination with ongoing global malaria efforts, heterogeneity in national regulatory structures, sub-optimal healthcare infrastructure, local practices and beliefs, and perspectives that view healthcare providers with undue trust or suspicion. In addition to engagement with international bodies, such as the World Health Organization, the Malaria in Pregnancy Consortium, the Steve Biko Centre for Bioethics, and the London School of Hygiene and Tropical Medicine, in order to address the challenges just described, Pfizer Inc. and Medicines for Malaria Venture (the “Sponsoring Entities” for these studies) and investigators liaised with national- and district-level stakeholders such as health ministers and regional/local community health workers. Community engagement measures undertaken by investigators included local meetings with community leaders to explain the research aims and answer questions and concerns voiced by the community. The investigators also engaged with family members of prospective trial participants in order to be sensitive to local practices and beliefs. Conclusion Engagement with key stakeholders at international and national levels enabled the Sponsoring Entities to address challenges by aligning the study design with the requirements of health and regulatory agencies and to understand and address healthcare infrastructure needs prior to trial initiation. Local stakeholder engagement, including community members, study participants, and family enabled the investigators to address challenges by ensuring that study design and conduct were adapted to local considerations and ensuring accurate information about the study aims was shared with the public. Trial registration ClinicalTrials.gov, ID: NCT01103063. Registered on 7 April 2010

    Participant flow chart.

    No full text
    <p><sup>a</sup>The reasons why study participants were no longer willing to participate included: no specific reason provided, <i>n</i> = 17; family, social, or personal issues, <i>n</i> = 17; experience of AEs, <i>n</i> = 16; no longer willing to take study drug, <i>n</i> = 6; relocation, <i>n</i> = 3; stillbirth, <i>n</i> = 1. <sup>b</sup>The reasons why study participants were no longer willing to participate included: family, social, or personal issues, <i>n</i> = 10; relocation, <i>n</i> = 3; no specific reason provided, <i>n</i> = 2. <sup>c</sup>The AEs leading to discontinuation were combinations of nausea, vomiting, asthenia, spontaneous abortion, imminent abortion, and restlessness. <sup>d</sup>The AE leading to discontinuation was premature rupture of membranes/stillbirth/umbilical cord abnormality. <sup>e</sup>The causes of deaths were meningitis; postpartum hemorrhage and uterine rupture; and eclampsia. <sup>f</sup>The death was due to peritonitis and intestinal perforation. <sup>g</sup>The ‘other’ reasons for discontinuation were: relocation, <i>n</i> = 9; family, social, or personal issues, <i>n</i> = 5; non-compliance with study procedures, <i>n</i> = 2. <sup>h</sup>The ‘other’ reasons for discontinuation were: relocation, <i>n</i> = 5; family, social, or personal issues, <i>n</i> = 5; no specific reason provided, <i>n</i> = 1.</p
    corecore