2,330 research outputs found
Instabilities in Zakharov Equations for Laser Propagation in a Plasma
F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov
system arising in the study of Laser-plasma interaction, is locally well posed
in the whole space, for fields vanishing at infinity. Here we show that in the
periodic case, seen as a model for fields non-vanishing at infinity, the system
develops strong instabilities of Hadamard's type, implying that the Cauchy
problem is strongly ill-posed
Nonlinear effects in charge stabilized colloidal suspensions
Molecular Dynamics simulations are used to study the effective interactions
in charged stabilized colloidal suspensions. For not too high macroion charges
and sufficiently large screening, the concept of the potential of mean force is
known to work well. In the present work, we focus on highly charged macroions
in the limit of low salt concentrations. Within this regime, nonlinear
corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta
Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em
Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)]
have to be considered. For non--bulklike systems, such as isolated pairs or
triples of macroions, we show, that nonlinear effects can become relevant,
which cannot be described by the charge renormalization concept [S. Alexander
et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of
macroions, we find an almost perfect qualitative agreement between our
simulation data and the primitive model. However, on a quantitative level,
neither Debye-H\"uckel theory nor the charge renormalization concept can be
confirmed in detail. This seems mainly to be related to the fact, that for
small ion concentrations, microionic layers can strongly overlap, whereas,
simultaneously, excluded volume effects are less important. In the case of
isolated triples, where we compare between coaxial and triangular geometries,
we find attractive corrections to pairwise additivity in the limit of small
macroion separations and salt concentrations. These triplet interactions arise
if all three microionic layers around the macroions exhibit a significant
overlap. In contrast to the case of two isolated colloids, the charge
distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure
Dynamic regimes of hydrodynamically coupled self-propelling particles
We analyze the collective dynamics of self-propelling particles (spps) which
move at small Reynolds numbers including the hydrodynamic coupling to the
suspending solvent through numerical simulations. The velocity distribution
functions show marked deviations from Gaussian behavior at short times, and the
mean-square displacement at long times shows a transition from diffusive to
ballistic motion for appropriate driving mechanism at low concentrations. We
discuss the structures the spps form at long times and how they correlate to
their dynamic behavior.Comment: 7 pages, 4 figure
Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension
We study numerically the influence of density and strain rate on the
diffusion and mobility of a single tagged particle in a sheared colloidal
suspension. We determine independently the time-dependent velocity
autocorrelation functions and, through a novel method, the response functions
with respect to a small force. While both the diffusion coefficient and the
mobility depend on the strain rate the latter exhibits a rather weak
dependency. Somewhat surprisingly, we find that the initial decay of response
and correlation functions coincide, allowing for an interpretation in terms of
an 'effective temperature'. Such a phenomenological effective temperature
recovers the Einstein relation in nonequilibrium. We show that our data is well
described by two expansions to lowest order in the strain rate.Comment: submitted to EP
Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming
We have formulated the problem of generating periodic dense paritcle packings
as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation
[S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the
objective function and impenetrability constraints can be exactly linearized
for sphere packings with a size distribution in -dimensional Euclidean space
, it is most suitable and natural to solve the corresponding ASC
optimization problem using sequential linear programming (SLP) techniques. We
implement an SLP solution to produce robustly a wide spectrum of jammed sphere
packings in for and with a diversity of disorder
and densities up to the maximally densities. This deterministic algorithm can
produce a broad range of inherent structures besides the usual disordered ones
with very small computational cost by tuning the radius of the {\it influence
sphere}. In three dimensions, we show that it can produce with high probability
a variety of strictly jammed packings with a packing density anywhere in the
wide range . We also apply the algorithm to generate various
disordered packings as well as the maximally dense packings for
and 6. Compared to the LS procedure, our SLP protocol is able to ensure that
the final packings are truly jammed, produces disordered jammed packings with
anomalously low densities, and is appreciably more robust and computationally
faster at generating maximally dense packings, especially as the space
dimension increases.Comment: 34 pages, 6 figure
Enhanced dispersion interaction in confined geometry
The dispersion interaction between two point-like particles confined in a
dielectric slab between two plates of another dielectric medium is studied
within a continuum (Lifshitz) theory. The retarded (Casimir-Polder) interaction
at large inter-particle distances is found to be strongly enhanced as the
mismatch between the dielectric permittivities of the two media is increased.
The large-distance interaction is multiplied due to confinement by a factor of
at zero temperature, and by
at finite temperature, \gamma=\ein(0)/\eout(0)
being the ratio between the static dielectric permittivities of the inner and
outer media. This confinement-induced amplification of the dispersion
interaction can reach several orders of magnitude.Comment: 4 page
Coulombian Disorder in Periodic Systems
We study the effect of unscreened charged impurities on periodic systems. We
show that the long wavelength component of the disorder becomes long ranged and
dominates static correlation functions. On the other hand, because of the
statistical tilt symmetry, dynamical properties such as pinning remain
unaffected. As a concrete example, we focus on the effect of Coulombian
disorder generated by charged impurities, on 3D charge density waves with non
local elasticity. We calculate the x-ray intensity and find that it is
identical to the one produced by thermal fluctuations in a disorder-free
smectic-A. We discuss the consequences of these results for experiments.Comment: 11 pages, 3 figures, revtex
Optimal time decay of the non cut-off Boltzmann equation in the whole space
In this paper we study the large-time behavior of perturbative classical
solutions to the hard and soft potential Boltzmann equation without the angular
cut-off assumption in the whole space \threed_x with \DgE. We use the
existence theory of global in time nearby Maxwellian solutions from
\cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to
determine the large time decay rates for the soft potential Boltzmann equation
in the whole space, with or without the angular cut-off assumption
\cite{MR677262,MR2847536}. For perturbative initial data, we prove that
solutions converge to the global Maxwellian with the optimal large-time decay
rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the
L^2_\vel(L^r_x)-norm for any .Comment: 31 pages, final version to appear in KR
The Challenge of Wide-Field Transit Surveys: The Case of GSC 01944-02289
Wide-field searches for transiting extra-solar giant planets face the
difficult challenge of separating true transit events from the numerous false
positives caused by isolated or blended eclipsing binary systems. We describe
here the investigation of GSC 01944-02289, a very promising candidate for a
transiting brown dwarf detected by the Transatlantic Exoplanet Survey (TrES)
network. The photometry and radial velocity observations suggested that the
candidate was an object of substellar mass in orbit around an F star. However,
careful analysis of the spectral line shapes revealed a pattern of variations
consistent with the presence of another star whose motion produced the
asymmetries observed in the spectral lines of the brightest star. Detailed
simulations of blend models composed of an eclipsing binary plus a third star
diluting the eclipses were compared with the observed light curve and used to
derive the properties of the three components. Our photometric and
spectroscopic observations are fully consistent with a blend model of a
hierarchical triple system composed of an eclipsing binary with G0V and M3V
components in orbit around a slightly evolved F5 dwarf. We believe that this
investigation will be helpful to other groups pursuing wide-field transit
searches as this type of false detection could be more common than true
transiting planets, and difficult to identify.Comment: To appear in ApJ, v. 621, 2005 March 1
- …