2,949 research outputs found
The Effects of Inter-particle Attractions on Colloidal Sedimentation
We use a mesoscopic simulation technique to study the effect of short-ranged
inter-particle attraction on the steady-state sedimentation of colloidal
suspensions. Attractions increase the average sedimentation velocity
compared to the pure hard-sphere case, and for strong enough attractions, a
non-monotonic dependence on the packing fraction with a maximum velocity
at intermediate is observed. Attractions also strongly enhance
hydrodynamic velocity fluctuations, which show a pronounced maximum size as a
function of . These results are linked to a complex interplay between
hydrodynamics and the formation and break-up of transient many-particle
clusters.Comment: 4 pages 4 figure
Reverse-selective diffusion in nanocomposite membranes
The permeability of certain polymer membranes with impenetrable
nanoinclusions increases with the particle volume fraction (Merkel et al.,
Science, 296, 2002). This intriguing observation contradicts even qualitative
expectations based on Maxwell's classical theory of conduction/diffusion in
composites with homogeneous phases. This letter presents a simple theoretical
interpretation based on classical models of diffusion and polymer physics. An
essential feature of the theory is a polymer-segment depletion layer at the
inclusion-polymer interface. The accompanying increase in free volume leads to
a significant increase in the local penetrant diffusivity, which, in turn,
increases the bulk permeability while exhibiting reverse selectivity. This
model captures the observed dependence of the bulk permeability on the
inclusion size and volume fraction, providing a straightforward connection
between membrane microstructure and performance
The Electric Double Layer Structure Around Charged Spherical Interfaces
We derive a formally simple approximate analytical solution to the
Poisson-Boltzmann equation for the spherical system via a geometric mapping.
Its regime of applicability in the parameter space of the spherical radius and
the surface potential is determined, and its superiority over the linearized
solution is demonstrated.Comment: 7 pages, 5 figure
Critical behaviors of sheared frictionless granular materials near jamming transition
Critical behaviors of sheared dense and frictionless granular materials in
the vicinity of the jamming transition are numerically investigated. From the
extensive molecular dynamics simulation, we verify the validity of the scaling
theory near the jamming transition proposed by Otsuki and Hayakawa (Prog.
Theor. Phys., 121, 647 (2009)). We also clarify the critical behaviors of the
shear viscosity and the pair correlation function based on both a phenomenology
and the simulation.Comment: 13pages, 26 figure
The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics
We describe a test particle approach based on dynamical density functional
theory (DDFT) for studying the correlated time evolution of the particles that
constitute a fluid. Our theory provides a means of calculating the van Hove
distribution function by treating its self and distinct parts as the two
components of a binary fluid mixture, with the `self' component having only one
particle, the `distinct' component consisting of all the other particles, and
using DDFT to calculate the time evolution of the density profiles for the two
components. We apply this approach to a bulk fluid of Brownian hard spheres and
compare to results for the van Hove function and the intermediate scattering
function from Brownian dynamics computer simulations. We find good agreement at
low and intermediate densities using the very simple Ramakrishnan-Yussouff
[Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy
functional. Since the DDFT is based on the equilibrium Helmholtz free energy
functional, we can probe a free energy landscape that underlies the dynamics.
Within the mean-field approximation we find that as the particle density
increases, this landscape develops a minimum, while an exact treatment of a
model confined situation shows that for an ergodic fluid this landscape should
be monotonic. We discuss possible implications for slow, glassy and arrested
dynamics at high densities.Comment: Submitted to Journal of Chemical Physic
Nonlinear effects in charge stabilized colloidal suspensions
Molecular Dynamics simulations are used to study the effective interactions
in charged stabilized colloidal suspensions. For not too high macroion charges
and sufficiently large screening, the concept of the potential of mean force is
known to work well. In the present work, we focus on highly charged macroions
in the limit of low salt concentrations. Within this regime, nonlinear
corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta
Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em
Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)]
have to be considered. For non--bulklike systems, such as isolated pairs or
triples of macroions, we show, that nonlinear effects can become relevant,
which cannot be described by the charge renormalization concept [S. Alexander
et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of
macroions, we find an almost perfect qualitative agreement between our
simulation data and the primitive model. However, on a quantitative level,
neither Debye-H\"uckel theory nor the charge renormalization concept can be
confirmed in detail. This seems mainly to be related to the fact, that for
small ion concentrations, microionic layers can strongly overlap, whereas,
simultaneously, excluded volume effects are less important. In the case of
isolated triples, where we compare between coaxial and triangular geometries,
we find attractive corrections to pairwise additivity in the limit of small
macroion separations and salt concentrations. These triplet interactions arise
if all three microionic layers around the macroions exhibit a significant
overlap. In contrast to the case of two isolated colloids, the charge
distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure
Electrophoresis of colloidal dispersions in the low-salt regime
We study the electrophoretic mobility of spherical charged colloids in a
low-salt suspension as a function of the colloidal concentration. Using an
effective particle charge and a reduced screening parameter, we map the data
for systems with different particle charges and sizes, including numerical
simulation data with full electrostatics and hydrodynamics and experimental
data for latex dispersions, on a single master curve. We observe two different
volume fraction-dependent regimes for the electrophoretic mobility that can be
explained in terms of the static properties of the ionic double layer.Comment: Substantially revised versio
Non-equilibrium sedimentation of colloids on the particle scale
We investigate sedimentation of model hard sphere-like colloidal dispersions
confined in horizontal capillaries using laser scanning confocal microscopy,
dynamical density functional theory, and Brownian dynamics computer
simulations. For homogenized initial states we obtain quantitative agreement of
the results from the respective approaches for the time evolution of the
one-body density distribution and the osmotic pressure on the walls. We
demonstrate that single particle information can be obtained experimentally in
systems that were initialized further out-of-equilibrium such that complex
lateral patterns form.Comment: to be published in Phys. Rev. Let
Colloidal gelation and non-ergodicity transitions
Within the framework of the mode coupling theory (MCT) of structural
relaxation, mechanisms and properties of non-ergodicity transitions in rather
dilute suspensions of colloidal particles characterized by strong short-ranged
attractions are studied. Results building on the virial expansion for particles
with hard cores and interacting via an attractive square well potential are
presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in
Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.:
Condens. Matte
Self-assembly of the simple cubic lattice with an isotropic potential
Conventional wisdom presumes that low-coordinated crystal ground states
require directional interactions. Using our recently introduced optimization
procedure to achieve self-assembly of targeted structures (Phys. Rev. Lett. 95,
228301 (2005), Phys. Rev. E 73, 011406 (2006)), we present an isotropic pair
potential for a three-dimensional many-particle system whose classical
ground state is the low-coordinated simple cubic (SC) lattice. This result is
part of an ongoing pursuit by the authors to develop analytical and
computational tools to solve statistical-mechanical inverse problems for the
purpose of achieving targeted self-assembly. The purpose of these methods is to
design interparticle interactions that cause self-assembly of technologically
important target structures for applications in photonics, catalysis,
separation, sensors and electronics. We also show that standard approximate
integral-equation theories of the liquid state that utilize pair correlation
function information cannot be used in the reverse mode to predict the correct
simple cubic potential. We report in passing optimized isotropic potentials
that yield the body-centered cubic and simple hexagonal lattices, which provide
other examples of non-close-packed structures that can be assembled using
isotropic pair interactions.Comment: 16 pages, 12 figures. Accepted for publication in Physical Review
- …