202 research outputs found

    Self-assembly of the simple cubic lattice with an isotropic potential

    Full text link
    Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures (Phys. Rev. Lett. 95, 228301 (2005), Phys. Rev. E 73, 011406 (2006)), we present an isotropic pair potential V(r)V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic (SC) lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.Comment: 16 pages, 12 figures. Accepted for publication in Physical Review

    Generation of Porous Particle Structures using the Void Expansion Method

    Full text link
    The newly developed "void expansion method" allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions using the discrete element method. Particles are randomly placed under addition of much smaller "void-particles". Then, the void-particle radius is increased repeatedly, thereby rearranging the structural particles until formation of a dense particle packing. The structural particles' mean coordination number was used to characterize the evolving microstructures. At some void radius, a transition from an initially low to a higher mean coordination number is found, which was used to characterize the influence of the various simulation parameters. For structural and void-particle stiffnesses of the same order of magnitude, the transition is found at constant total volume fraction slightly below the random close packing limit. For decreasing void-particle stiffness the transition is shifted towards a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure

    Morphology of Shocked Lateral Outflows in Colliding Hydrodynamic Flows

    Get PDF
    Supersonic interacting flows occurring in phenomena such as protostellar jets give rise to strong shocks, and have been demonstrated in several laboratory experiments. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in three dimensions. We introduce variations in the flow parameters of density, velocity, and cross sectional radius of the colliding flows %radius in order to study the propagation and conical shape of the bow shock formed by collisions between two, not necessarily symmetric, hypersonic flows. We find that the motion of the interaction region is driven by imbalances in ram pressure between the two flows, while the conical structure of the bow shock is a result of shocked lateral outflows (SLOs) being deflected from the horizontal when the flows are of differing cross-section

    The Influence of the Degree of Heterogeneity on the Elastic Properties of Random Sphere Packings

    Full text link
    The macroscopic mechanical properties of colloidal particle gels strongly depend on the local arrangement of the powder particles. Experiments have shown that more heterogeneous microstructures exhibit up to one order of magnitude higher elastic properties than their more homogeneous counterparts at equal volume fraction. In this paper, packings of spherical particles are used as model structures to computationally investigate the elastic properties of coagulated particle gels as a function of their degree of heterogeneity. The discrete element model comprises a linear elastic contact law, particle bonding and damping. The simulation parameters were calibrated using a homogeneous and a heterogeneous microstructure originating from earlier Brownian dynamics simulations. A systematic study of the elastic properties as a function of the degree of heterogeneity was performed using two sets of microstructures obtained from Brownian dynamics simulation and from the void expansion method. Both sets cover a broad and to a large extent overlapping range of degrees of heterogeneity. The simulations have shown that the elastic properties as a function of the degree of heterogeneity are independent of the structure generation algorithm and that the relation between the shear modulus and the degree of heterogeneity can be well described by a power law. This suggests the presence of a critical degree of heterogeneity and, therefore, a phase transition between a phase with finite and one with zero elastic properties.Comment: 8 pages, 6 figures; Granular Matter (published online: 11. February 2012

    Centaurs and Scattered Disk Objects in the Thermal Infrared: Analysis of WISE/NEOWISE Observations

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) observed 52 Centaurs and scattered disk objects (SDOs) in the thermal infrared, including 15 new discoveries. We present analyses of these observations to estimate sizes and mean optical albedos. We find mean albedos of 0.08 ± 0.04 for the entire data set. Thermal fits yield average beaming parameters of 0.9 ± 0.2 that are similar for both SDO and Centaur sub-classes. Biased cumulative size distributions yield size-frequency distribution power law indices of ~–1.7 ± 0.3. The data also reveal a relation between albedo and color at the 3σ level. No significant relation between diameter and albedos is found

    Erythropoietic protoporphyria without skin symptoms-you do not always see what they feel

    Get PDF
    Erythropoietic protoporphyria (EPP) is an inherited disorder of the porphyrin metabolism that often remains undiagnosed in children. We report on a 4-year-old girl who had been suffering for 1 year from recurrent painful crises affecting her hands, feet, and nose following sun exposure. Objective skin lesions were absent until the age of 6. Porphyrin analysis revealed elevated free erythrocyte protoporphyrin (FEP) levels confirming the diagnosis of EPP. This illustrates that skin lesions might be completely absent in children affected with EPP, a fact that has only been reported once previously. Because EPP can manifest with few and unspecific cutaneous symptoms or no skin lesions at all, like in this patient, the diagnosis of EPP might be delayed or missed. EPP should be excluded in all photosensitive children, especially when discomfort is disproportionate to the extent of the cutaneous lesions. The clinic, pathophysiology, diagnosis, complications, and therapy of EPP are discussed

    Short-term beneficial effects of methylene blue on kidney damage in septic shock patients

    Get PDF
    Contains fulltext : 71022.pdf (publisher's version ) (Closed access)OBJECTIVE: We previously demonstrated that upregulation of renal inducible nitric oxide synthase (iNOS) is associated with proximal tubule injury during systemic inflammation in humans. In this study we investigated the short-term effect of methylene blue (MB), an inhibitor of the NO pathway, on kidney damage and function in septic shock patients. DESIGN AND SETTING: A prospective clinical study conducted in an intensive care unit. PATIENTS: Nine patients (four men, five women, mean age 71 +/- 3 years) with confirmed or suspected bacterial infection and with refractory septic shock defined as a mean arterial pressure or = 0.2 microg/kg per minute. INTERVENTIONS: A 4 h continuous intravenous infusion of 1 mg/kg MB per hour. MEASUREMENTS AND RESULTS: The urinary excretion of NO metabolites decreased with median 90% (range 75-95%) from baseline to 6 h after MB administration. The first 24 h creatinine clearance improved by 51% (18-173%) after MB treatment but was still strongly impaired. During the first 6 h after the start of MB treatment both the urinary excretion of cytosolic glutathione S-transferase A1-1 and P1-1, markers for proximal and distal tubule damage, respectively, decreased by 45% (10-70%) and 70% (40-85) vs. baseline. After termination of the MB infusion the NO metabolites and markers of tubular injury returned to pretreatment levels. CONCLUSIONS: In septic patients with refractory shock short-term infusion of MB is associated with a decrease in NO production and an attenuation of the urinary excretion of renal tubular injury markers

    Children’s perceptions of dissimilarity in parenting styles are associated with internalizing and externalizing behavior

    Get PDF
    The purpose of this study was to examine the relationship between children’s perception of dissimilarity in parenting styles, and internalizing and externalizing problems in children. Children from the general population (n = 658) reported on the level of emotional warmth, rejection, and overprotection of both parents by filling out the child version of the Egna Minnen Beträffande Uppfostran (EMBU-C) and mothers completed the child behavior checklist (CBCL). Intraclass correlations were computed as measures of dissimilarity between parenting styles of mothers and fathers. Children’s perceived dissimilarity in parental emotional warmth is associated with internalizing and externalizing problems (β = 0.092, p < 0.05; β = 0.091, p < 0.05). Perceived dissimilarity between parents’ overprotection is associated with externalizing problems (β = 0.097, p < 0.05). Perceived dissimilarity between parenting styles is associated with externalizing and internalizing problems, over and above the effects of the level of the parenting styles. The results highlight the negative consequences of perceived dissimilarity between parents. To conclude, children have more internalizing and externalizing problems when they perceive their parents as more dissimilar in parenting styles

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig
    corecore