13 research outputs found

    Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway

    No full text
    An upregulation of the Na+-K+-2Cl− cotransporter NKCC1, the main chloride importer in mature neurons, can lead to depolarizing/excitatory responses mediated by GABA type A receptors (GABAARs) and, thus, to hyperactivity. Understanding the regulatory mechanisms of NKCC1 would help prevent intra-neuronal chloride accumulation that occurs in pathologies with defective inhibition. The cell mechanisms regulating NKCC1 are poorly understood. Here, we report in mature hippocampal neurons that GABAergic activity controls the membrane diffusion and clustering of NKCC1 via the chloride-sensitive WNK lysine deficient protein kinase 1 (WNK1) and the downstream Ste20 Pro-line Asparagine Rich Kinase (SPAK) kinase that directly phosphorylates NKCC1 on key threonine residues. At rest, this signaling pathway has little effect on intracellular Cl− concentration, but it participates in the elevation of intraneuronal Cl− concentration in hyperactivity conditions associated with an up-regulation of NKCC1. The fact that the main chloride exporter, the K+-Cl− cotransporter KCC2, is also regulated in mature neurons by the WNK1 pathway indicates that this pathway will be a target of choice in the pathology

    Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway

    No full text
    An upregulation of the Na+-K+-2Cl− cotransporter NKCC1, the main chloride importer in mature neurons, can lead to depolarizing/excitatory responses mediated by GABA type A receptors (GABAARs) and, thus, to hyperactivity. Understanding the regulatory mechanisms of NKCC1 would help prevent intra-neuronal chloride accumulation that occurs in pathologies with defective inhibition. The cell mechanisms regulating NKCC1 are poorly understood. Here, we report in mature hippocampal neurons that GABAergic activity controls the membrane diffusion and clustering of NKCC1 via the chloride-sensitive WNK lysine deficient protein kinase 1 (WNK1) and the downstream Ste20 Pro-line Asparagine Rich Kinase (SPAK) kinase that directly phosphorylates NKCC1 on key threonine residues. At rest, this signaling pathway has little effect on intracellular Cl− concentration, but it participates in the elevation of intraneuronal Cl− concentration in hyperactivity conditions associated with an up-regulation of NKCC1. The fact that the main chloride exporter, the K+-Cl− cotransporter KCC2, is also regulated in mature neurons by the WNK1 pathway indicates that this pathway will be a target of choice in the pathology

    Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA Receptor Diffusion

    Get PDF
    Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABA receptor (GABAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3ÎČ (GSK3ÎČ) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3ÎČ signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3ÎČ, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors

    Introducing Diinamic, a flexible and robust method for clustering analysis in single-molecule localization microscopy

    No full text
    International audienceAbstract Super-resolution microscopy allowed major improvements in our capacity to describe and explain biological organization at the nanoscale. Single-molecule localization microscopy (SMLM) uses the positions of molecules to create super-resolved images, but it can also provide new insights into the organization of molecules through appropriate pointillistic analyses that fully exploit the sparse nature of SMLM data. However, the main drawback of SMLM is the lack of analytical tools easily applicable to the diverse types of data that can arise from biological samples. Typically, a cloud of detections may be a cluster of molecules or not depending on the local density of detections, but also on the size of molecules themselves, the labeling technique, the photo-physics of the fluorophore, and the imaging conditions. We aimed to set an easy-to-use clustering analysis protocol adaptable to different types of data. Here, we introduce Diinamic, which combines different density-based analyses and optional thresholding to facilitate the detection of clusters. On simulated or real SMLM data, Diinamic correctly identified clusters of different sizes and densities, being performant even in noisy datasets with multiple detections per fluorophore. It also detected subdomains (“nanodomains”) in clusters with non-homogeneous distribution of detections

    Serotonin 2B Receptor by Interacting with NMDA Receptor and CIPP Protein Complex May Control Structural Plasticity at Glutamatergic Synapses

    No full text
    International audienceThe serotonin 2B (5-HT2B) receptor coupled to Gq-protein contributes to the control of neuronal excitability and is implicated in various psychiatric disorders. The mechanisms underlying its brain function are not fully described. Using peptide affinity chromatography combined with mass spectrometry, we found that the PDZ binding motif of the 5-HT2B receptor located at its C-terminal end interacts with the scaffolding protein channel interacting PDZ protein (CIPP). We then showed, in COS-7 cells, that the association of the 5-HT2B receptor to CIPP enhanced receptor-operated inositol phosphate (IP) production without affecting its cell surface and intracellular levels. Co-immunoprecipitation experiments revealed that CIPP, the 5-HT2B receptor, and the NR1 subunit of the NMDA receptor form a macromolecular complex. CIPP increased 5-HT2B receptor clustering at the surface of primary cultured hippocampal neurons and prevented receptor dispersion following agonist stimulation, thus potentiating IP production and intracellular calcium mobilization in dendrites. CIPP or 5-HT2B receptor stimulation in turn dispersed NR1 clusters colocalized with 5-HT2B receptors and increased the density and maturation of dendritic spines. Collectively, our results suggest that the 5-HT2B receptor, the NMDA receptor, and CIPP may form a signaling platform by which serotonin can influence structural plasticity of excitatory glutamatergic synapses

    Sperm-inherited organelle clearance in C-elegans relies on LC3-dependent autophagosome targeting to the pericentrosomal area

    No full text
    International audienceMacroautophagic degradation of sperm-inherited organelles prevents paternal mitochondrial DNA transmission in C. elegans. The recruitment of autophagy markers around sperm mitochondria has also been observed in mouse and fly embryos but their role in degradation is debated. Both worm Atg8 ubiquitin-like proteins, LGG1/GABARAP and LGG-2/LC3, are recruited around sperm organelles after fertilization. Whereas LGG-1 depletion affects autophagosome function, stabilizes the substrates and is lethal, we demonstrate that LGG-2 is dispensable for autophagosome formation but participates in their microtubule-dependent transport toward the pericentrosomal area prior to acidification. In the absence of LGG-2, autophagosomes and their substrates remain clustered at the cell cortex, away from the centrosomes and their associated lysosomes. Thus, the clearance of sperm organelles is delayed and their segregation between blastomeres prevented. This allowed us to reveal a role of the RAB5/RAB-7 GTPases in autophagosome formation. In conclusion, the major contribution of LGG-2 in sperm-inherited organelle clearance resides in its capacity to mediate the retrograde transport of autophagosomes rather than their fusion with acidic compartments: a potential key function of LC3 in controlling the fate of sperm mitochondria in other species

    Conformational state-dependent regulation of GABAA receptor diffusion and subsynaptic domains

    No full text
    International audienceThe efficacy of GABAergic synapses relies on the number of postsynaptic GABAA receptors (GABAARs), which is regulated by a diffusion capture mechanism. Here, we report that the conformational state of GABAARs influences their membrane dynamics. Indeed, pharmacological and mutational manipulations of receptor favoring active or desensitized states altered GABAAR diffusion leading to the disorganization of GABAAR subsynaptic domains and gephyrin scaffold, as detected by super-resolution microscopy. Active and desensitized receptors were confined to perisynaptic endocytic zones, and some of them were further internalized. We propose that following their activation or desensitization, synaptic receptors rapidly diffuse at the periphery of the synapse where they remain confined until they switch back to a resting state or are internalized. We speculate that this allows a renewal of activatable receptors at the synapse, contributing to maintain the efficacy of the synaptic transmission, in particular on sustained GABA transmission

    5-HT1A and 5-HT2B receptor interaction and co-clustering regulate serotonergic neuron excitability

    No full text
    Summary: Many psychiatric diseases have been associated with serotonin (5-HT) neuron dysfunction. The firing of 5-HT neurons is known to be under 5-HT1A receptor-mediated autoinhibition, but functional consequences of coexpressed receptors are unknown. Using co-immunoprecipitation, BRET, confocal, and super-resolution microscopy in hippocampal and 5-HT neurons, we present evidence that 5-HT1A and 5-HT2B receptors can form heterodimers and co-cluster at the plasma membrane of dendrites. Selective agonist stimulation of coexpressed 5-HT1A and 5-HT2B receptors prevents 5-HT1A receptor internalization and increases 5-HT2B receptor membrane clustering. Current clamp recordings of 5-HT neurons revealed that 5-HT1A receptor stimulation of acute slices from mice lacking 5-HT2B receptors in 5-HT neurons increased their firing activity trough Ca2+-activated potassium channel inhibition compared to 5-HT neurons from control mice. This work supports the hypothesis that the relative expression of 5-HT1A and 5-HT2B receptors tunes the neuronal excitability of serotonergic neurons through potassium channel regulation

    La géphyrine interagit avec le co-transporteur K-Cl KCC2 pour réguler son expression de surface et sa fonction dans les neurones corticaux.

    No full text
    International audienceThe K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling
    corecore