89 research outputs found

    An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extracts

    Get PDF
    Anti-inflammatory and analgesic activities of a standardized Orthosiphon stamineus methanol:water (50:50 vol/vol) leaf extract (SEOS) were evaluated in animal models. Oral administration of SEOS at doses of 500 and 1,000 mg/kg significantly reduced the hind paw edema in rats at 3 and 5 hours after carrageenan administration (P < .01 and P < .01; P < .01 and P < .05, respectively). SEOS (1,000 mg/kg, p.o.) also produced significant (P < .05) analgesic activity in both the acetic acid-induced writhing test and the formalin-induced licking test (late phase) in mice and rats, respectively. However, SEOS showed no effect on the tail flick and hot plate tests in mice. The results of the present study support the proposal that O. stamineus has anti-inflammatory and non-narcotic analgesic activities. These findings justify the traditional use of the plant for treating pain and inflammation

    Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review

    Get PDF
    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future

    Activin A: its role and involvement in inflammatory diseases

    Get PDF
    Activin proteins are members of the transforming growth factor-β family. Activin A is involved in several biological responses including wound repair, cell death, proliferation and differentiation of many cell types. Biologically active activins consist of homodimers or heterodimers of two beta (β) subunits that are linked together by a single covalent disulphide bond. The subunits in humans are βA, βB, βC and βE. As an example, a combination of two βA subunits will produce a unit of activin A. These proteins are found in most cells of body such as macrophage and activated circulating monocytes. Their role in inflammation can be categorised into two types, either pro- or anti-inflammatory agents, depending on the cell type and phase. Activin signals are kept in balance by antagonist follistatin (Fst), which is a glycoprotein expressed in tissues and encoded by the follistatin gene in humans

    The antimalarial effect of curcumin is mediated by the inhibition of glycogen synthase kinase-3β

    Get PDF
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β

    Receptor for advanced glycation end products and its involvement in inflammatory diseases

    Get PDF
    The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF- B as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions

    Delta-9-tetrahydrocannabinol (∆9-THC) induce neurogenesis and improve cognitive performances of male Sprague Dawley rats

    Get PDF
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats

    IL-8 as a potential in-vitro severity biomarker for dengue disease

    Get PDF
    Dengue is a common infection, caused by dengue virus. There are four different dengue serotypes, with different capacity to cause severe dengue infections. Besides, secondary infections with heterologous serotypes, concurrent infections of multiple dengue serotypes may alter the severity of dengue infection. This study aims to compare the severity of single infection and concurrent infections of different combinations of dengue serotypes in-vitro. Human mast cells (HMC)-1.1 were infected with single and concurrent infections of multiple dengue serotypes. The infected HMC-1.1 supernatant was then added to human umbilical cord vascular endothelial cells (HUVEC) and severity of dengue infections was measured by the percentage of transendothelial electrical resistance (TEER). Levels of IL- 10, CXCL10 and sTRAIL in HMC-1.1 and IL-8, IL-10 and CXCL10 in HUVEC culture supernatants were measured by the ELISA assays. The result showed that the percentage of TEER values were significantly lower in single infections (p0.4), indicating that IL-8 may be suitable as an in-vitro severity biomarker. In conclusion, this in-vitro model presented few similarities with regards to the conditions in dengue patients, suggesting that it could serve as a severity model to test for severity and levels of severity biomarkers upon different dengue virus infections

    Eradication of malaria through genetic engineering: the current situation

    Get PDF
    Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually. Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease. Recent increased deployment of vector controls and new artemisinin combination therapies have dramatically reduced the mortality and morbidity of malaria worldwide. However, the gradual emergence of parasite and mosquito resistance has raised alarm regarding the effectiveness of current artemisinin-based therapies. In this review, mechanisms of anti-malarial drug resistance in the Plasmodium parasite and new genetically engineered tools of research priorities are discussed. The complexity of the parasite lifecycle demands novel interventions to achieve global eradication. However, turning laboratory discovered transgenic interventions into functional products entails multiple experimental phases in addition to ethical and safety hurdles. Uncertainty over the regulatory status and public acceptance further discourage the implementation of genetically modified organisms

    Antiplasmodial and chloroquine chemosensitizing and resistance reversal effects of coumarin derivatives against Plasmodium falciparum 3D7 and K1

    Get PDF
    Background Emergence of chloroquine (CQ) resistance among different strains of Plasmodium falciparum is the worst incident that has ever faced the dedicated efforts to eradicate malaria. The main cause of CQ resistance is over-activity of the pumping mechanism that ousts CQ outside the DV. This urged the scientists to look for other alternatives or adjuvants that augment its action. CQ The study aimed to test the potential of five coumarin derivatives, namely; umbeliferon, esculetin, scopoletine, herniarin and 3-aminocoumarine to inhibit plasmodium growth and reverse CQ resistance in Plasmodium falciparum K1 and 3D7. They are highly ubiquitous in nature and are famous by their diverse pharmacological effects. SYBRE green-1 based drug sensitivity assay was used to screen the effect of CQ and each coumarin on the parasite growth and isobologram technique was to assess the interaction of the coumarins with CQ. Effect of each coumarin on both RBCs and Vero cells stability as well as on RBCs fragility were screened to exclude any toxic impact on normal cells. On the other hand, their effect on hemozoin formation was screened to investigate about their molecular mechanism. For molecular characterization, Their antioxidant properties were determined using the conventional in vitro tests and their characters were obtained from Molinspiration Simulation Software. Results showed that all of them were safe to human cells, have weak to moderate plasmodial growth inhibitory effect and only umbeliferon, 3- aminocoumarin and esculetin has interacted effectively with CQ. These actions are neither correlated with hemozoin formation inhibition nor to the antioxidant mechanisms. Further studies recommended to investigate the mechanism of their action. Overall, all the tested coumarins are not ideal to be used in the conventional malaria therapy and only umbeliferon, 3-aminocoumarin and esculetin can be suggested to potentiate CQ action

    Pathology and host immune evasion during human leptospirosis: a review

    Get PDF
    Human leptospirosis is considered as one of the most widespread and potentially fatal zoonotic diseases that causes high mortality and morbidity in the endemic regions of tropical and subtropical countries. The infection can arise from direct or indirect exposure of human through contaminated environment that contains leptospires or animal reservoirs that carry leptospires. The clinical manifestations during human leptospirosis ranges from asymptomatic, mild infections to severe and life-threatening complications involving multi-organ failures with kidneys, lungs and liver severely affected. Despite much efforts have been put in to unravel the pathogenesis during human leptospirosis, it remains obscure to which extent the host factors or the pathogen itself contribute towards the pathogenesis. Host innate immunity, especially, polymorphonuclear neutrophils and complement system are involved in the first line of defense during human leptospirosis. However, pathogenic Leptospira has acquired diverse evasion strategies to evade from host immunity and establish infection in infected hosts. Hence, in this review, we focus on organs pathology during human leptospiral infection and host evasion strategies employed by Leptospira. A profound understanding on leptospiral immunity and how Leptospira subvert the immune system may provide new insights on the development of therapeutic regimens against this species in future
    corecore