18 research outputs found

    Aufbau und Regelung aktiver MagnetfĂĽhrungen

    Get PDF
    [no abstract

    Federated Ensemble YOLOv5 -- A Better Generalized Object Detection Algorithm

    Full text link
    Federated learning (FL) has gained significant traction as a privacy-preserving algorithm, but the underlying resemblances of federated learning algorithms like Federated averaging (FedAvg) or Federated SGD (Fed SGD) to ensemble learning algorithms have not been fully explored. The purpose of this paper is to examine the application of FL to object detection as a method to enhance generalizability, and to compare its performance against a centralized training approach for an object detection algorithm. Specifically, we investigate the performance of a YOLOv5 model trained using FL across multiple clients and employ a random sampling strategy without replacement, so each client holds a portion of the same dataset used for centralized training. Our experimental results showcase the superior efficiency of the FL object detector's global model in generating accurate bounding boxes for unseen objects, with the test set being a mixture of objects from two distinct clients not represented in the training dataset. These findings suggest that FL can be viewed from an ensemble algorithm perspective, akin to a synergistic blend of Bagging and Boosting techniques. As a result, FL can be seen not only as a method to enhance privacy, but also as a method to enhance the performance of a machine learning model.Comment: 8 pages and submitted to FLTA2023 symposium under IEE

    Federated K-Means Clustering via Dual Decomposition-based Distributed Optimization

    Full text link
    The use of distributed optimization in machine learning can be motivated either by the resulting preservation of privacy or the increase in computational efficiency. On the one hand, training data might be stored across multiple devices. Training a global model within a network where each node only has access to its confidential data requires the use of distributed algorithms. Even if the data is not confidential, sharing it might be prohibitive due to bandwidth limitations. On the other hand, the ever-increasing amount of available data leads to large-scale machine learning problems. By splitting the training process across multiple nodes its efficiency can be significantly increased. This paper aims to demonstrate how dual decomposition can be applied for distributed training of K K -means clustering problems. After an overview of distributed and federated machine learning, the mixed-integer quadratically constrained programming-based formulation of the K K -means clustering training problem is presented. The training can be performed in a distributed manner by splitting the data across different nodes and linking these nodes through consensus constraints. Finally, the performance of the subgradient method, the bundle trust method, and the quasi-Newton dual ascent algorithm are evaluated on a set of benchmark problems. While the mixed-integer programming-based formulation of the clustering problems suffers from weak integer relaxations, the presented approach can potentially be used to enable an efficient solution in the future, both in a central and distributed setting

    Federated Object Detection for Quality Inspection in Shared Production

    Full text link
    Federated learning (FL) has emerged as a promising approach for training machine learning models on decentralized data without compromising data privacy. In this paper, we propose a FL algorithm for object detection in quality inspection tasks using YOLOv5 as the object detection algorithm and Federated Averaging (FedAvg) as the FL algorithm. We apply this approach to a manufacturing use-case where multiple factories/clients contribute data for training a global object detection model while preserving data privacy on a non-IID dataset. Our experiments demonstrate that our FL approach achieves better generalization performance on the overall clients' test dataset and generates improved bounding boxes around the objects compared to models trained using local clients' datasets. This work showcases the potential of FL for quality inspection tasks in the manufacturing industry and provides valuable insights into the performance and feasibility of utilizing YOLOv5 and FedAvg for federated object detection.Comment: Will submit it to an IEEE conferenc

    Ontology-Based Digital Twin Framework for Smart Factories

    Get PDF
    In modern smart factories we have multiple entities that interact with one another, such as worker-assistance system, robot collaboration and their corresponding software modules. To fa- cilitate seamless cooperation between those subsystems, it is beneficial that they all have access to one coherent environment model. Hence, we propose an ontology-based Digital Twin that al- lows semantic representation of all important parts of such a scenario. It allows uniform access for different application components such as intention recognition and robotic action planning. Furthermore, it provides information tailored to the needs of those different components, e.g., via different zoom levels and affordances

    Neural Adaptive Control of a Robot Joint Using Secondary Encoders

    No full text
    Using industrial robots for machining applications in flexible manufacturing processes lacks a high accuracy. The main reason for the deviation is the flexibility of the gearbox. Secondary Encoders (SE) as an additional, high precision angle sensor offer a huge potential of detecting gearbox deviations. This paper aims to use SE to reduce gearbox compliances with a feed forward, adaptive neural control. The control network is trained with a second network for system identification. The presented algorithm is capable of online application and optimizes the robot accuracy in a nonlinear simulation
    corecore