960 research outputs found

    Panel I: The Future of Sports Television

    Get PDF

    Three Good Mothers: Galadriel, Psyche, and Sybil Coningsby

    Get PDF
    Examines the imagery and functions of the Mother archetype in world mythology and the characters of Tolkien’s Galadriel, Lewis’s Psyche, and Williams’s Sybil

    What is Narnia?

    Get PDF
    ompares the geography of Middle-earth, Narnia, and Oz, their inhabitants’ contrasting isolationist or exploratory attitudes, and the accessibility of these worlds to outsiders. Concludes by listing several factors that make Narnia unique among fantasy worlds, including the passage of time, the importance of humans from our own world in its history and prophecy, and the centrality of Aslan in all his implications

    Ketogenic Diets and Pain [post-print]

    Get PDF
    Ketogenic diets are well established as a successful anticonvulsant therapy. Based on overlap between mechanisms postulated to underlie pain and inflammation, and mechanisms postulated to underlie therapeutic effects of ketogenic diets, recent studies have explored the ability for ketogenic diets to reduce pain. Here we review clinical and basic research thus far exploring the impact of a ketogenic diet on thermal pain, inflammation, and neuropathic pain

    The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    Get PDF
    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system

    Adenosine A\u3csub\u3e1\u3c/sub\u3e receptor-mediated protection of mouse hippocampal synaptic transmission against oxygen and/or glucose deprivation: A comparative study

    Get PDF
    © 2019 the American Physiological Society. Adenosine receptors are widely ex-pressed in the brain, and adenosine is a key bioactive substance for neuroprotection. In this article, we clarify systematically the role of adenosine A1 receptors during a range of timescales and conditions when a significant amount of adenosine is released. Using acute hippocampal slices obtained from mice that were wild type or null mutant for the adenosine A1 receptor, we quantified and characterized the impact of varying durations of experimental ischemia, hypoxia, and hypoglycemia on synaptic transmission in the CA1 subregion. In normal tissue, these three stressors rapidly and markedly reduced synaptic transmission, and only treatment of sufficient duration led to incomplete recovery. In contrast, inactivation of adenosine A1 receptors delayed and/or lessened the reduction in synaptic transmission during all three stressors and reduced the magnitude of the recovery significantly. We reproduced the responses to hypoxia and hypoglycemia by applying an adenosine A1 receptor antagonist, validating the clear effects of genetic receptor inactivation on synaptic transmission. We found activation of adenosine A1 receptor inhibited hippocampal synaptic transmission during the acute phase of ischemia, hypoxia, or hypoglycemia and caused the recovery from synaptic impairment after these three stressors using genetic mutant. These studies quantify the neuroprotective role of the adenosine A1 receptor during a variety of metabolic stresses within the same recording system. NEW & NOTEWORTHY Deprivation of oxygen and/or glucose causes a rapid adenosine A1 receptor-mediated decrease in synaptic transmission in mouse hippocampus. We quantified adenosine A1 receptor-mediated inhibition during and synaptic recovery after ischemia, hypoxia, and hypoglycemia of varying durations using a genetic mutant and confirmed these findings using pharmacology. Overall, using the same recording conditions, we found the acute response and the neuroprotective ability of the adenosine A1 receptor depended on the type and duration of deprivation event

    Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    Get PDF
    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy

    Metabolic Autocrine Regulation of Neurons Involves Cooperation Among Pannexin Hemichannels, Adenosine Receptors and KATP Channels

    Get PDF
    Metabolic perturbations that decrease or limit blood glucose—such as fasting or adhering to a ketogenic diet—reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A1 receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K+ channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A1 receptors coupled to ATP-sensitive K+ channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS

    Reduced Pain and Inflammation in Juvenile and Adult Rats Fed a Ketogenic Diet

    Get PDF
    The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3–4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults
    corecore