610 research outputs found

    Efficient calculation of the antiferromagnetic phase diagram of the 3D Hubbard model

    Full text link
    The Dynamical Cluster Approximation with Betts clusters is used to calculate the antiferromagnetic phase diagram of the 3D Hubbard model at half filling. Betts clusters are a set of periodic clusters which best reflect the properties of the lattice in the thermodynamic limit and provide an optimal finite-size scaling as a function of cluster size. Using a systematic finite-size scaling as a function of cluster space-time dimensions, we calculate the antiferromagnetic phase diagram. Our results are qualitatively consistent with the results of Staudt et al. [Eur. Phys. J. B 17 411 (2000)], but require the use of much smaller clusters: 48 compared to 1000

    Structural precursor to freezing: An integral equation study

    Full text link
    Recent simulation studies have drawn attention to the shoulder which forms in the second peak of the radial distribution function of hard-spheres at densities close to freezing and which is associated with local crystalline ordering in the dense fluid. We address this structural precursor to freezing using an inhomogeneous integral equation theory capable of describing local packing constraints to a high level of accuracy. The addition of a short-range attractive interaction leads to a well known broadening of the fluid-solid coexistence region as a function of attraction strength. The appearence of a shoulder in our calculated radial distribution functions is found to be consistent with the broadened coexistence region for a simple model potential, thus demonstrating that the shoulder is not exclusively a high density packing effect

    Statistical mechanical description of liquid systems in electric field

    Full text link
    We formulate the statistical mechanical description of liquid systems for both polarizable and polar systems in an electric field in the E\mathbf{E}-ensemble, which is the pendant to the thermodynamic description in terms of the free energy at constant potential. The contribution of the electric field to the configurational integral Q~N(E)\tilde{Q}_{N}(\mathbf{E}) in the E\mathbf{E}-ensemble is given in an exact form as a factor in the integrand of Q~N(E)\tilde{Q}_{N}(\mathbf{E}). We calculate the contribution of the electric field to the Ornstein-Zernike formula for the scattering function in the E\mathbf{E}-ensemble. As an application we determine the field induced shift of the critical temperature for polarizable and polar liquids, and show that the shift is upward for polarizable liquids and downward for polar liquids.Comment: 6 page

    Probing spatial spin correlations of ultracold gases by quantum noise spectroscopy

    Get PDF
    Spin noise spectroscopy with a single laser beam is demonstrated theoretically to provide a direct probe of the spatial correlations of cold fermionic gases. We show how the generic many-body phenomena of anti-bunching, pairing, antiferromagnetic, and algebraic spin liquid correlations can be revealed by measuring the spin noise as a function of laser width, temperature, and frequency.Comment: Revised version. 4 pages, 3 figures. Accepted for PR

    On the Momentum Distribution and Condensate Fraction in the Bose Liquid

    Full text link
    The model recently proposed by A.A. Shanenko [Phys. Lett. A 227 (1997) 367] is used to derive linear integro-differential equations whose solutions provide reasonable estimates for the momentum distribution and condensate fraction in interacting many-boson system at zero temperature. An advantage of these equations is that they can be employed in the weak coupling regime and beyond. As an example, analytical treatment of the weak coupling case is given.Comment: 12 pages, REVTEX, no figures, submitted to Phys. Lett.

    Production Associated to Rare Events in High Energy Hadron-Hadron Collisions

    Get PDF
    At very high energy the same universal relation between the multiparticle or the transverse energy distribution associated to a rare event CC, PCP_C and the corresponding minimum bias distribution P, PC(ν)ν/P(ν)P_C(\nu)\equiv \nu/ P(\nu), νn\nu\equiv n or ETE_T works for nucleus-nucleus collisions as well as for hadron-hadron collisions. This suggests that asymptotically, all hadronic processes are similar.Comment: 9 pages, 4 Postscript figure

    A unified treatment of Ising model magnetizations

    Full text link
    We show how the spontaneous bulk, surface and corner magnetizations in the square lattice Ising model can all be obtained within one approach. The method is based on functional equations which follow from the properties of corner transfer matrices and vertex operators and which can be derived graphically. In all cases, exact analytical expressions for general anisotropy are obtained. Known results, including several for which only numerical computation was previously possible, are verified and new results related to general anisotropy and corner angles are obtained.Comment: Plain Tex, 30 pages, 21 figures in eps format. Revised for publication in Annalen der Physi

    Phase transition in a 2-dimensional Heisenberg model

    Full text link
    We investigate the two-dimensional classical Heisenberg model with a nonlinear nearest-neighbor interaction V(s,s')=2K[(1+s.s')/2 ]^p. The analogous nonlinear interaction for the XY model was introduced by Domany, Schick, and Swendsen, who find that for large p the Kosterlitz-Thouless transition is preempted by a first-order transition. Here we show that, whereas the standard (p=1) Heisenberg model has no phase transition, for large enough p a first-order transition appears. Both phases have only short range order, but with a correlation length that jumps at the transition.Comment: 6 pages, 5 encapsulated postscript figures; to appear in Physical Review Letter

    Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2

    Full text link
    The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported. The material has a layered structure comprised of square Cu4O4 tetramers. The Cu ions are divalent and the system behaves as a low-dimensional S=1/2 antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic susceptibility and heat capacity are consistent with low-dimensional magnetism. The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure

    Low temperature series expansions for the square lattice Ising model with spin S > 1

    Full text link
    We derive low-temperature series (in the variable u=exp[βJ/S2]u = \exp[-\beta J/S^2]) for the spontaneous magnetisation, susceptibility and specific heat of the spin-SS Ising model on the square lattice for S=32S=\frac32, 2, 52\frac52, and 3. We determine the location of the physical critical point and non-physical singularities. The number of non-physical singularities closer to the origin than the physical critical point grows quite rapidly with SS. The critical exponents at the singularities which are closest to the origin and for which we have reasonably accurate estimates are independent of SS. Due to the many non-physical singularities, the estimates for the physical critical point and exponents are poor for higher values of SS, though consistent with universality.Comment: 14 pages, LaTeX with IOP style files (ioplppt.sty), epic.sty and eepic.sty. To appear in J. Phys.
    corecore