107 research outputs found

    Analysis of Approximate Message Passing with a Class of Non-Separable Denoisers

    Full text link
    Approximate message passing (AMP) is a class of efficient algorithms for solving high-dimensional linear regression tasks where one wishes to recover an unknown signal \beta_0 from noisy, linear measurements y = A \beta_0 + w. When applying a separable denoiser at each iteration, the performance of AMP (for example, the mean squared error of its estimates) can be accurately tracked by a simple, scalar iteration referred to as state evolution. Although separable denoisers are sufficient if the unknown signal has independent and identically distributed entries, in many real-world applications, like image or audio signal reconstruction, the unknown signal contains dependencies between entries. In these cases, a coordinate-wise independence structure is not a good approximation to the true prior of the unknown signal. In this paper we assume the unknown signal has dependent entries, and using a class of non-separable sliding-window denoisers, we prove that a new form of state evolution still accurately predicts AMP performance. This is an early step in understanding the role of non-separable denoisers within AMP, and will lead to a characterization of more general denoisers in problems including compressive image reconstruction.Comment: 37 pages, 1 figure. A shorter version of this paper to appear in the proceedings of ISIT 201

    The Error Probability of Sparse Superposition Codes with Approximate Message Passing Decoding

    Get PDF
    Sparse superposition codes, or sparse regression codes (SPARCs), are a recent class of codes for reliable communication over the AWGN channel at rates approaching the channel capacity. Approximate message passing (AMP) decoding, a computationally efficient technique for decoding SPARCs, has been proven to be asymptotically capacity-achieving for the AWGN channel. In this paper, we refine the asymptotic result by deriving a large deviations bound on the probability of AMP decoding error. This bound gives insight into the error performance of the AMP decoder for large but finite problem sizes, giving an error exponent as well as guidance on how the code parameters should be chosen at finite block lengths. For an appropriate choice of code parameters, we show that for any fixed rate less than the channel capacity, the decoding error probability decays exponentially in n/(logn)2Tn/(\log n)^{2T}, where TT, the number of AMP iterations required for successful decoding, is bounded in terms of the gap from capacity

    Spatially Coupled Sparse Regression Codes: Design and State Evolution Analysis.

    Get PDF
    We consider the design and analysis of spatially coupled sparse regression codes (SC-SPARCs), which were recently introduced by Barbier et al. for efficient communication over the additive white Gaussian noise channel. SC-SPARCs can be efficiently decoded using an Approximate Message Passing (AMP) decoder, whose performance in each iteration can be predicted via a set of equations called state evolution. In this paper, we give an asymptotic characterization of the state evolution equations for SC-SPARCs. For any given base matrix (that defines the coupling structure of the SC-SPARC) and rate, this characterization can be used to predict whether or not AMP decoding will succeed in the large system limit. We then consider a simple base matrix defined by two parameters (ω,Λ)(\omega, \Lambda), and show that AMP decoding succeeds in the large system limit for all rates R<CR < \mathcal{C}. The asymptotic result also indicates how the parameters of the base matrix affect the decoding progression. Simulation results are presented to evaluate the performance of SC-SPARCs defined with the proposed base matrix.Comment: 8 pages, 6 figures. A shorter version of this paper to appear in ISIT 201

    Near-Optimal Coding for Many-user Multiple Access Channels

    Full text link
    This paper considers the Gaussian multiple-access channel (MAC) in the asymptotic regime where the number of users grows linearly with the code length. We propose efficient coding schemes based on random linear models with approximate message passing (AMP) decoding and derive the asymptotic error rate achieved for a given user density, user payload (in bits), and user energy. The tradeoff between energy-per-bit and achievable user density (for a fixed user payload and target error rate) is studied, and it is demonstrated that in the large system limit, a spatially coupled coding scheme with AMP decoding achieves near-optimal tradeoffs for a wide range of user densities. Furthermore, in the regime where the user payload is large, we also study the spectral efficiency versus energy-per-bit tradeoff and discuss methods to reduce decoding complexity at large payload sizes.Comment: 35 pages, 4 figures. A shorter version of this paper appeared in ISIT 202
    corecore