
Capacity-achieving Sparse Regression Codes via
Approximate Message Passing Decoding

Cynthia Rush
Yale University, USA

Email: cynthia.rush@yale.edu

Adam Greig
University of Cambridge, UK

Email: ag611@cam.ac.uk

Ramji Venkataramanan
University of Cambridge, UK
Email: ramji.v@eng.cam.ac.uk

Abstract—Sparse superposition codes were recently introduced
by Barron and Joseph for reliable communication over the
AWGN channel at rates approaching the channel capacity. In this
code, the codewords are sparse linear combinations of columns
of a design matrix. In this paper, we propose an approximate
message passing decoder for sparse superposition codes. The
complexity of the decoder scales linearly with the size of the
design matrix. The performance of the decoder is rigorously
analyzed and it is shown to asymptotically achieve the AWGN
capacity. We also provide simulation results to demonstrate the
performance of the decoder at finite block lengths, and introduce
a power allocation that significantly improves the empirical
performance.

I. INTRODUCTION

This paper considers the problem of constructing low-
complexity, capacity-achieving codes for the memoryless ad-
ditive white Gaussian noise (AWGN) channel. The channel
generates output y from input x according to

y = x+ w, (1)

where the noise w is a Gaussian random variable with zero
mean and variance σ2. There is an average power constraint
P on the input x: if x1, . . . , xn are transmitted over n uses of
the channel, then we require that 1

n

∑n
i=1 x

2
i ≤ P . The signal-

to-noise ratio P
σ2 is denoted by snr. The goal is to construct

codes with computationally efficient encoding and decoding,
whose rates approach the channel capacity given by

C := 1
2 log(1 + snr). (2)

Sparse superposition codes, also called Sparse Regression
Codes (SPARCs), were recently introduced by Barron and
Joseph [1] for communication over the channel in (1). They
proposed an efficient decoding algorithm called ‘adaptive
successive decoding’, and showed that for any fixed rate
R < C, the probability of decoding error decays to zero
exponentially in n

logn , where n is the block length of the code.
Subsequently, a soft-decision iterative decoder was proposed
by Cho and Barron [2], [3], with theoretical guarantees similar
to the decoder in [1] but improved empirical performance.

In this paper, we propose an approximate message passing
(AMP) decoder for SPARCs. We analyze its performance and
prove that the probability of decoding error goes to zero with
growing block length for all fixed rates R < C.

Approximate Message Passing (AMP): AMP refers to a class
of algorithms [4]–[9] that are Gaussian or quadratic approx-
imations of loopy belief propagation algorithms (e.g., min-
sum, sum-product) on dense factor graphs. AMP has proved
particularly effective for the compressed sensing problem [10],
which is described by the model

y = Aβ + w. (3)

Here A is an n×N measurement matrix with n < N , β ∈ RN
is a sparse vector to be reconstructed from the observed vector
y ∈ Rn, and w ∈ Rn is the measurement noise. One popular
class of reconstruction algorithms is `1-norm based convex
optimization, e.g. [11], [12]. Though these algorithms have
strong theoretical guarantees, the computational cost makes it
challenging to implement the convex optimization procedures
for problems where N is large.

The factor graph corresponding to the model in (3) is
dense, hence it is infeasible to implement message passing
algorithms in which the messages are complicated real-valued
functions. AMP circumvents this difficulty by passing only
scalar parameters corresponding to these functions. The refer-
ences [5], [7]–[9] describe how various flavors of AMP for the
compressed sensing model can be obtained by approximating
the standard message passing equations. These approximations
reduce the message passing equations to a set of simple rules
for computing successive estimates of β.

In [4], it was demonstrated via numerical experiments that:
i) the empirical performance of AMP for a large class of
measurement matrices is similar to convex optimization based
methods at significantly lower computational cost, and ii)
the mean-squared reconstruction error of these estimates of
β could be tracked by a simple scalar iteration called state
evolution. In [6], it was rigorously proved that state evolution
is accurate in the large system limit when the measurement
matrix A has i.i.d. Gaussian entries.

Main Contributions: We propose an AMP decoder for
sparse regression codes, which is derived via a first-order
approximation of a min-sum-like message passing algorithm.
The main result of the paper is Theorem 1, in which we
rigorously show that for all rates R < C, the probability
of decoding error goes to zero as the block length tends to
infinity. We also present simulation results to demonstrate
the performance of the decoder at finite block lengths, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A:

β:
T

0,
√
nP1, 0,

√
nP2, 0,

√
nPL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

Fig. 1: A is an n ×ML matrix and β is a ML × 1 vector. The
positions of the non-zeros in β correspond to the gray columns of A
which combine to form the codeword Aβ.

introduce a power allocation that significantly improves the
empirical performance.

We use the framework of Bayati and Montanari [6] to prove
our main result. However, we remark that the analysis of the
proposed algorithm does not follow directly from the results
in [6], [13]. The main reason for this is that the undersampling
ratio n/N in our setting goes to zero in the large system limit,
whereas previous rigorous analyses of AMP consider the case
where the undersampling ratio is a constant.

Related Work on SPARCs: In addition to the the adaptive
successive decoder [1] and the iterative soft-decision decoder
[2], [3], Barbier and Krzakala recently proposed an approxi-
mate message passing decoder for sparse superposition codes
in [14]. Their decoder has different update rules from the AMP
proposed here. A replica-based analysis of the decoder in [14]
suggested it could not achieve rates beyond a threshold which
was strictly smaller than C. Very recently, Barbier et al [15]
reported empirical results which show that the performance of
the decoder in [14] can be improved by using spatially coupled
Hadamard matrices to define the code.

Notation: The `2-norm of vector x is denoted by ‖x‖. The
transpose of a matrix B is denoted by B∗. For any positive
integer m, [m] is the set {1, . . . ,m}. The indicator function
of an event A is denoted by 1(A). log and ln are used to
denote logarithms with base 2 and base e, respectively. Rate
is measured in bits.

II. THE SPARSE REGRESSION CODEBOOK

A sparse regression code (SPARC) is defined in terms of a
design matrix A of dimension n×ML, whose entries are i.i.d.
N (0, 1

n). Here n is the block length and M and L are integers
whose values will be specified shortly in terms of n and the
rate R. As shown in Fig. 1, one can think of the matrix A being
composed of L sections with M columns each. Each codeword
is a linear combination of L columns, with one column from
each section. Formally, a codeword can be expressed as Aβ,
where β is an ML×1 vector (β1, . . . , βML) with the following
property: there is exactly one non-zero βj for 1 ≤ j ≤M , one
non-zero βj for M+1 ≤ j ≤ 2M , and so forth. The non-zero
value of β in section ` is set to

√
nP`, where P1, . . . , PL are

positive constants that satisfy
∑L
`=1 P` = P . Denote the set

of all β’s that satisfy this property by BM,L(P1, . . . , PL).

The total number of codewords is ML. To obtain a rate of
R bits/sample, we need

ML = 2nR or L logM = nR. (4)

There are several choices for the pair (M,L) which satisfy
(4). For our constructions, we will choose M equal to Lb, for
some constant b > 0. Then, (4) becomes

bL logL = nR. (5)

Thus L = Θ(n
logn), and the size of the design matrix A (given

by n×ML = n× Lb+1) now grows polynomially in n.
Encoding: The encoder splits its stream of input bits into

segments of logM bits each. The message vector β0 is indexed
by L such segments—the decimal equivalent of segment `
determines the position of the non-zero coefficient in section
` of β0. The input codeword is then computed as X = Aβ0.

Power Allocation: For our main result, we use an exponen-
tially decaying allocation of the form P` ∝ 2−2C`/L, ` ∈ [L].
In Section IV-A, we discuss alternative power allocations,
and find that an appropriate combination of exponential and
flat power allocations yields good decoding performance at
finite block lengths. Both the design matrix A and the power
allocation are known to the encoder and the decoder before
communication begins.

Some more notation: In the analysis, we will treat the
message as a random vector β, which is uniformly distributed
over BM,L(P1, . . . , PL), the set of length ML vectors that
have a single non-zero entry

√
nP` in section `, for ` ∈ [L].

We will denote the true message vector by β0; β0 is interpreted
as a realization of the random vector β.

We will use indices i, j to denote specific entries of β, while
the index ` will be used to denote the entire section ` of β.
Thus βi, βj are scalars, while β` is a length M vector. We
set N = ML, and write limx to denote the limit of x as the
SPARC parameters n,L,M → ∞ simultaneously, according
to M = Lb and bL logL = nR.

III. THE AMP CHANNEL DECODER

Given the received vector y = Aβ0 +w, the AMP decoder
generates successive estimates of the message vector, denoted
by {βt}, where βt ∈ RN for t = 1, 2, Set β0 = 0, the
all-zeros vector. For t = 0, 1, . . ., compute

zt = y −Aβt +
zt−1

τ2t−1

(
P − ‖β

t‖2
n

)
, (6)

βt+1
i = ηti(β

t +A∗zt), for i = 1, . . . , N = ML, (7)

where quantities with negative indices are set equal to zero.
The constants {τt}, and the estimation functions ηti(·) are
defined as follows for t = 0, 1, Define

τ20 = σ2 + P, τ2t+1 = σ2 + P (1− xt+1), t ≥ 0, (8)

where

xt+1 =

L∑
`=1

P`
P

E

[
exp

(√
nP`

τt
(U `1 +

√
nP`

τt
)
)

exp
(√

nP`

τt
(U `1 +

√
nP`

τt
)
)

+
∑M
j=2 exp

(√
nP`

τt
U `j

)]
(9)

In (9), {U `j } are i.i.d. N (0, 1) random variables for j ∈
[M], ` ∈ [L]. For i ∈ [N], define

ηti(s) =
√
nP`

exp
(
si
√
nP`

τ2
t

)
∑
j∈sec` exp

(
sj
√
nP`

τ2
t

) , if i ∈ sec`, ` ∈ [L].

(10)
The notation j ∈ sec` is used as shorthand for “index j in
section `”. Notice that ηti(s) depends on all the components
of s in the section containing i.

Before running the AMP decoder, the constants {τt} must
be iteratively computed using (8) and (9). This is an offline
computation, and can be done through Monte Carlo simula-
tion. The relation (8), which describes how τt+1 is obtained
from τt, is called state evolution, following the terminology
in [4], [6]. For Theorem 1, we derive closed form expressions
for the trajectories of xt+1 and τ2t as n → ∞. For now, it
suffices to note that for any fixed R < C, τt strictly decreases
with t for a finite number of steps Tn, at which point we have
τTn+1 ≥ τTn . Having determined τ0, τ1, . . . , τTn , the decoder
iteratively computes codeword estimates β1, . . . , βTn using (6)
and (7). Finally, in each section ` of βTn , set the maximum
value to

√
nP` and remaining entries to 0 to obtain the decoded

message β̂.
The derivation of the AMP from a min-sum-like message

passing algorithm is given in [16]. In the remainder of this
section, we give some intuition about the update and state
evolution equations (6)–(10) in the large system limit.

A. The Test Statistics βt +A∗zt

Consider the AMP update step (7), in which βt+1 is
generated from the test statistic

st := βt +A∗zt. (11)

The update in (7) is underpinned by the following key property
of the test statistic: st is asymptotically (as n→∞) distributed
as β + τ̄tZ, where τ̄t is the limit of τt, and Z is an i.i.d.
N (0, 1) random vector independent of the message vector β.
This property is due to the presence of the “Onsager” term

zt−1

τ2t−1

(
P − ‖β

t‖2
n

)
in the residue update step (6); see [6, Section I-C] for a
discussion about role of the Onsager term in AMP.

In light of the above property, a natural way to generate
βt+1 from st = s is

βt+1(s) = E[β |β + τtZ = s], (12)

i.e., βt+1 is the Bayes optimal estimate of β given the
observation st = β + τtZ. For i ∈ sec`, ` ∈ [L], we have

βt+1
i (s) = E[βi|β + τtZ = s] = E[βi|{βj + τtZj = sj}j∈sec`]

=
√
nP`

exp
(
si
√
nP`

τ2
t

)
∑
j∈sec` exp

(
sj
√
nP`

τ2
t

) ,
(13)

which is the expression in (10). The conditional expectation
in (13) is computed using the following: β and Z are inde-
pendent, Z is i.i.d ∼ N (0, 1), and the location of the non-zero
entry in each section ` of β is uniformly distributed within the
section.

Thus, under the assumption that st = β + τtZ, βt+1 is the
estimate of the message vector β (based on st) that minimizes
the expected squared estimation error. Also, for i ∈ sec`,
βt+1
i /
√
nP` is the posterior probability of βi being the non-

zero entry in section `, conditioned on the observation st.

B. State Evolution and its Consequences

The following proposition shows that we can interpret the
quantity xt+1 defined in (9) as the expectation of the (power-
weighted) fraction of correctly decoded sections in step (t+1).

Proposition 1. Under the assumption that st = β + τtZ,
where Z ∼ i.i.d. N (0,1) and independent of β, the quantity
xt+1 defined in (9) satisfies

xt+1 =
1

nP
E[β∗βt+1], and 1−xt+1 =

1

nP
E[‖β−βt+1‖2].

The proof is given in [16]. We emphasize that the above
interpretation is accurate only in the limit as n,M,L → ∞,
when st is distributed as β + τ̄tZ, with τ̄t := lim τt.

We now state two lemmas which give closed-form expres-
sions for τ̄t := lim τt and x̄t+1 := limxt+1. Treating xt+1 in
(9) as a function of τ , we can define

x(τ) :=

L∑
`=1

P`
P

E

[
exp

(√
nP`

τ (U `1 +
√
nP`

τ)
)

exp
(√

nP`

τ (U `1 +
√
nP`

τ)
)

+
∑M
j=2 exp

(√
nP`

τ U `j

)]
(14)

where {U `j } are i.i.d. ∼ N (0, 1) for j ∈ [M], ` ∈ [L].

Lemma 1. For t = 0, 1, . . ., we have

x̄(τ) := limx(τ) = lim
L→∞

L∑
`=1

P`
P

1{c` > 2(ln 2)Rτ2} (15)

where c` := limL→∞ LP`.

The next lemma uses Lemma 1 to obtain the asymptotic
state evolution equations for the following exponentially de-
caying power allocation:

P` = P · 22C/L − 1

1− 2−2C
· 2−2C`/L, ` ∈ [L]. (16)

Lemma 2. For the power allocation in (16) and t ≥ 0:

x̄t := limxt =
(1 + snr)− (1 + snr)1−ξt−1

snr
, (17)

τ̄2t := lim τ2t = σ2 + P (1− x̄t) = σ2 (1 + snr)1−ξt−1 (18)

where ξ−1 = 0 and for t ≥ 0,

ξt = min

{(
1

2C log

(C
R

)
+ ξt−1

)
, 1

}
. (19)

The proofs of the lemmas are given in [16].
We observe from (19) that for R < C, ξt increases in each

step by 1
2C log

(C
R

)
until it equals 1. Similarly, (17) implies

that x̄t strictly increases with t until it reaches one, and the
number of steps T ∗ until x̄T∗ = 1 is

T ∗ =

⌈
2C

log(C/R)

⌉
. (20)

The constants {ξt}t≥0 have a nice interpretation in the
large system limit: at the end of step t + 1, the first ξt
fraction of sections in βt+1 will be correctly decodable with
high probability, i.e., the true non-zero entry in these sections
will have almost all the posterior probability mass. The other
(1 − ξt) fraction of sections will not be correctly decodable
from βt+1 as the power allocated to these sections is not large
enough. An additional 1

2C log
(C
R

)
fraction of sections become

correctly decodable in each step until T ∗, when all the sections
are correctly decodable with high probability.

As x̄t increases to 1, (18) implies that the variance of the
“noise” in the AMP test statistic decreases monotonically from
τ̄20 = σ2+P down to τ̄2T∗ = σ2. That is, the initial observation
y = Aβ + w is effectively transformed by the AMP decoder
into a cleaner statistic sT

∗
= β + w′, where w′ is Gaussian

with the same variance as the measurement noise w.
To summarize, in the large system limit:
• For any fixed R < C, the AMP decoder terminates within

a finite number of steps T ∗ given by (20).
• At the termination step T ∗, lim 1

nE‖β − βT
∗‖2 = 0.

For finite-sized dictionaries, the test statistic st will not be
precisely distributed as β+τtZ. Nevertheless, computing xt+1

numerically via (8) and (9) yields an estimate for the expected
weighted fraction of correctly decoded sections after each step.

IV. PERFORMANCE OF THE AMP DECODER

Our main result is proved for the following slightly modified
AMP decoder, which is run for exactly T ∗ steps. Set β0 = 0
and compute

zt = y −Aβt +
zt−1

τ̄2t−1

(
P − ‖β

t‖2
n

)
, (21)

βt+1
i = ηti(β

t +A∗zt), for i ∈ [N] (22)

where for i ∈ sec`, ` ∈ [L],

ηti(s) =
√
nP`

exp
(
si
√
nP`/τ̄

2
t

)∑
j∈sec` exp

(
sj
√
nP`/τ̄2t

) . (23)

The only difference from the earlier decoder described in (8)–
(10) is that we now use the limiting value τ̄2t defined in Lemma
2 instead of τ2t . The decoded codeword β̂ is obtained by setting
the maximum of βT

∗
in each section ` to

√
nP` and the

remaining entries to 0.
The section error rate of a decoder for a SPARC S is

Esec(S) :=
1

L

L∑
`=1

1{β̂` 6= β0`}. (24)

Theorem 1. Fix any rate R < C, and b > 0. Consider a
sequence of rate R SPARCs {Sn} indexed by block length n,
with design matrix parameters L and M = Lb determined ac-
cording to (5), and an exponentially decaying power allocation
given by (16). Then the section error rate of the AMP decoder
(described in (21)–(23), and run for T ∗ steps) converges to
zero almost surely, i.e., for any ε > 0,

lim
n0→∞

P (Esec(Sn) < ε, ∀n ≥ n0) = 1. (25)

The proof of the theorem is given in [16].
Remarks: 1) The probability measure in (25) is over the

Gaussian design matrix A, the Gaussian channel noise w, and
the uniform prior over the message β ∈ BM,L(P1, . . . , PL).

2) As in [1], we can construct a concatenated code with
an inner SPARC of rate R and an outer Reed-Solomon (RS)
code of rate (1 − 2ε). If M is a prime power, a RS code
defined over a finite field of order M defines a one-to-one
mapping between a symbol of the RS codeword and a section
of the SPARC. The concatenated code has rate R(1−2ε), and
decoding complexity that is polynomial in n. The decoded
message β̂ equals β whenever the section error rate of the
SPARC is less than ε. Thus for any ε > 0, the theorem
guarantees that the probability of message decoding error for
a sequence of rate R(1− 2ε) SPARC-RS concatenated codes
will tend to zero, i.e., limP (β̂ 6= β) = 0.

A. Simulation Results and the Effect of Power Allocation

In this section, we make two modifications to the SPARC
construction to improve the empirical performance at finite
block lengths. First, we introduce a power allocation that
yields several orders of magnitude improvement in section
error rate for rates R that are not very close to the capacity C.
Second, we use a Hadamard design matrix (instead of Gaus-
sian), which facilitates a decoder with O(N logN) running
time and a memory requirement of O(N). In comparsion, with
a Gaussian design matrix the running time and memory of the
AMP decoder are both O(nN).

Modified Power Allocation: The power allocation is charac-
terized by two parameters a, f . For f ∈ [0, 1], let

P` =

{
κ · 2−2aC`/L, 1 ≤ ` ≤ fL
κ · 2−2aCf , fL+ 1 ≤ ` ≤ L (26)

where κ is a normalizing constant to ensure that the total power
across sections is P . For intuition, first assume that f = 1.
Then (26) implies that P` ∝ 2−a2C`/L for ` ∈ [L]. Setting

Fig. 2: Section error rate vs R/C at snr = 15, C = 2 bits. The top
curve shows the average section error rate of the AMP over 1000
trials with P` ∝ 2−2C`/L. The middle curve shows the section error
rate using the power allocation in (26) with the (a, f) values shown.
The SPARC parameters for both these curves are M = 512, L =
1024. The bottom curve shows the section error rate with the same
(a, f) values, but L =M = 4096.

a = 1 recovers the original power allocation of (16), while
a = 0 allocates P

L to each section. Increasing a increases the
power allocated to the initial sections which makes them more
likely to decode correctly, which in turn helps by decreasing
the effective noise variance τ̄2t in subsequent AMP iterations.
However, if a is too large, the final sections may have too
little power to decode correctly.

Hence we want the parameter a to be large enough to
ensure that the AMP gets started on the right track, but not
much larger. This intuition can be made precise in the large
system limit using Lemma 1, which specifies the condition for
a section ` to be correctly decoded in step (t+1): the limit of
LP` must exceed a threshold proportional to Rτ̄2t . For rates
close to C, we need a to be close to 1 for the initial sections
to cross this threshold and get decoding started correctly. On
the other hand, for rates such as R = 0.6C, a = 1 allocates
more power than necessary to the initial sections, leading to
poor decoding performance in the final sections.

In addition, we found that the section error rate can be
further improved by flattening the power allocation in the final
sections. For a given a, (26) has an exponential power allo-
cation until section fL, and constant power for the remaining
(1 − f)L sections. The allocation in (26) is continuous, i.e.
each section in the flat part is allocated the same power as
the final section in the exponential part. Flattening boosts the
power given to the final sections compared to an exponentially
decaying allocation. The two parameters (a, f) let us trade-off
between the conflicting objectives of assigning enough power
to the initial sections and ensuring that the final sections have
enough power to be decoded correctly.

Experimental Results: Fig. 2 shows the performance of the
AMP at different rates. Given the values of M,L, the block
length n is determined by the rate R according to (4). The top
curve shows the average section error rate of the AMP (over
1000 runs) with an exponentially decaying power allocation

where P` ∝ 2−2C`/L. The middle curve shows the average
section error rate with the power allocation in (26), with
values of (a, f) obtained via a rough optimization around an
initial guess of a = f = R/C. The bottom curve shows the
average section error rate with L = M = 4096, and the power
allocation in (26) with same (a, f) values as before.

In all cases, the decoder described in (21)–(23) was used.
The constants {τ̄2t } required by the decoder are specified by
Lemma 2 for the exponential allocation. For the modified
allocation the values {τ̄2t } can be similarly derived [16, Sec
4.1.1]. The simulations for Fig. 2 were run using Hadamard
design matrices; implementation details can be found in [16,
Sec 4.1.2].

It is evident that a judicious power allocation scheme can
significantly improve section error rates. An interesting open
question is to find good rules of thumb for the power allocation
as a function of rate and signal-to-noise ratio.

ACKNOWLEDGEMENT

RV would like to acknowledge support from a Marie
Curie Career Integration Grant (GA Number 631489). AG is
supported by an EPSRC Doctoral Training Award.

REFERENCES

[1] A. Joseph and A. R. Barron, “Fast sparse superposition codes have near
exponential error probability for R < C,” IEEE Trans. Inf. Theory,
vol. 60, pp. 919–942, Feb. 2014.

[2] A. R. Barron and S. Cho, “High-rate sparse superposition codes with
iteratively optimal estimates,” in ISIT, 2012.

[3] S. Cho, High-dimensional regression with random design, including
sparse superposition codes. PhD thesis, Yale University, 2014.

[4] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy
of Sciences, vol. 106, no. 45, pp. 18914–18919, 2009.

[5] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing: I. motivation and construction,” in IEEE
Information Theory Workshop (ITW), 2010.

[6] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, pp. 764–785, 2011.

[7] A. Montanari, “Graphical models concepts in compressed sensing,” in
Compressed Sensing (Y. C. Eldar and G. Kutyniok, eds.), pp. 394–438,
Cambridge University Press, 2012.

[8] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
“Probabilistic reconstruction in compressed sensing: algorithms, phase
diagrams, and threshold achieving matrices,” Journal of Statistical
Mechanics: Theory and Experiment, no. 8, 2012.

[9] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in ISIT, pp. 2168–2172, 2011.

[10] R. Baraniuk, E. Candes, R. Nowak, and M. Vetterli (editors), “Special
issue on compressive sampling,” IEEE Signal Processing Magazine,
vol. 25, March 2008.

[11] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, pp. 4203 – 4215, Dec. 2005.

[12] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
pp. 1289 –1306, April 2006.

[13] A. Javanmard and A. Montanari, “State evolution for general approxi-
mate message passing algorithms, with applications to spatial coupling,”
Information and Inference, p. iat004, 2013.

[14] J. Barbier and F. Krzakala, “Replica analysis and approximate message
passing decoder for sparse superposition codes,” in ISIT, 2014.

[15] J. Barbier, C. Schulke, and F. Krzakala, “Approximate message-passing
with spatially coupled structured operators, with applications to com-
pressed sensing and sparse superposition codes.” arXiv:1312.1740.

[16] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving
sparse superposition codes via approximate message passing decoding.”
arXiv:1501.05892.

	Introduction
	The Sparse Regression Codebook
	The AMP Channel Decoder
	The Test Statistics t + A*zt
	State Evolution and its Consequences

	Performance of the AMP Decoder
	Simulation Results and the Effect of Power Allocation

	References

