19 research outputs found

    Few-Shot Open-Set Learning for On-Device Customization of KeyWord Spotting Systems

    Full text link
    A personalized KeyWord Spotting (KWS) pipeline typically requires the training of a Deep Learning model on a large set of user-defined speech utterances, preventing fast customization directly applied on-device. To fill this gap, this paper investigates few-shot learning methods for open-set KWS classification by combining a deep feature encoder with a prototype-based classifier. With user-defined keywords from 10 classes of the Google Speech Command dataset, our study reports an accuracy of up to 76% in a 10-shot scenario while the false acceptance rate of unknown data is kept to 5%. In the analyzed settings, the usage of the triplet loss to train an encoder with normalized output features performs better than the prototypical networks jointly trained with a generator of dummy unknown-class prototypes. This design is also more effective than encoders trained on a classification problem and features fewer parameters than other iso-accuracy approaches.Comment: Accepted at INTERSPEECH 202

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10μW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193μW193\mu W and 277μW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    Ultra-Low Power IoT Smart Visual Sensing Devices for Always-ON Applications

    Get PDF
    This work presents the design of a Smart Ultra-Low Power visual sensor architecture that couples together an ultra-low power event-based image sensor with a parallel and power-optimized digital architecture for data processing. By means of mixed-signal circuits, the imager generates a stream of address events after the extraction and binarization of spatial gradients. When targeting monitoring applications, the sensing and processing energy costs can be reduced by two orders of magnitude thanks to either the mixed-signal imaging technology, the event-based data compression and the use of event-driven computing approaches. From a system-level point of view, a context-aware power management scheme is enabled by means of a power-optimized sensor peripheral block, that requests the processor activation only when a relevant information is detected within the focal plane of the imager. When targeting a smart visual node for triggering purpose, the event-driven approach brings a 10x power reduction with respect to other presented visual systems, while leading to comparable results in terms of detection accuracy. To further enhance the recognition capabilities of the smart camera system, this work introduces the concept of event-based binarized neural networks. By coupling together the theory of binarized neural networks and focal-plane processing, a 17.8% energy reduction is demonstrated on a real-world data classification with a performance drop of 3% with respect to a baseline system featuring commercial visual sensors and a Binary Neural Network engine. Moreover, if coupling the BNN engine with the event-driven triggering detection flow, the average power consumption can be as low as the sleep power of 0.3mW in case of infrequent events, which is 8x lower than a smart camera system featuring a commercial RGB imager

    Reduced precision floating-point optimization for Deep Neural Network On-Device Learning on microcontrollers

    Get PDF
    Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72x faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively - requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6x previous FP32 parallel implementations on a Continual Learning setup.& COPY; 2023 Elsevier B.V. All rights reserved

    Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers

    Full text link
    Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72×\times faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively -- requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6 ×\times previous FP32 parallel implementations on a Continual Learning setup.Comment: Pre-print version submitted to Elsevier's Future Generation Computer Systems journal. For the associated open-source release, see https://github.com/pulp-platform/pulp-trainli

    Land & Localize: An Infrastructure-free and Scalable Nano-Drones Swarm with UWB-based Localization

    Full text link
    Relative localization is a crucial functional block of any robotic swarm. We address it in a fleet of nano-drones characterized by a 10 cm-scale form factor, which makes them highly versatile but also strictly limited in their onboard power envelope. State-of-the-Art solutions leverage Ultra-WideBand (UWB) technology, allowing distance range measurements between peer nano-drones and a stationary infrastructure of multiple UWB anchors. Therefore, we propose an UWB-based infrastructure-free nano-drones swarm, where part of the fleet acts as dynamic anchors, i.e., anchor-drones (ADs), capable of automatic deployment and landing. By varying the Ads' position constraint, we develop three alternative solutions with different trade-offs between flexibility and localization accuracy. In-field results, with four flying mission-drones (MDs), show a localization root mean square error (RMSE) spanning from 15.3 cm to 27.8 cm, at most. Scaling the number of MDs from 4 to 8, the RMSE marginally increases, i.e., less than 10 cm at most. The power consumption of the MDs' UWB module amounts to 342 mW. Ultimately, compared to a fixed-infrastructure commercial solution, our infrastructure-free system can be deployed anywhere and rapidly by taking 5.7 s to self-localize 4 ADs with a localization RMSE of up to 12.3% in the most challenging case with 8 MDs
    corecore