106 research outputs found
Tools for process intensification upstream and continuous processing downstream
The intensification of cell culture production and continuous downstream processing are two important features of many new biomanufacturing schemes. Perfusion of cell culture bioreactors using an alternating tangential flow (ATF) device can increase viable cell density 5-10 fold and can be used to continuously harvest product suitable for immediate downstream processing. Perfusion can also be applied to high density cell banking and preparation of N-1 cell inoculum to greatly accelerate production turnover in fed batch processes. The capture of continuous upstream production can be made practical by prepacked columns of uniform performance and rapid load using low aspect ratio columns. To maintain an aseptic environment we are developing gamma irradiated proteinA capture media that can operate for long periods with low bioburden. Together these tools of perfusion and aseptic capture can facilitate the engineering of a more cost and time efficient manufacturing process
Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich\u27s ataxia.
BACKGROUND: Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA.
METHODOLOGY/PRINCIPAL FINDINGS: To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change.
CONCLUSIONS/SIGNIFICANCE: Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support buccal cells or PBMCs as sources for measuring frataxin protein in therapeutic trials
Two New Pimelic Diphenylamide HDAC Inhibitors Induce Sustained Frataxin Upregulation in Cells from Friedreich's Ataxia Patients and in a Mouse Model
BACKGROUND: Friedreich's ataxia (FRDA), the most common recessive ataxia in Caucasians, is due to severely reduced levels of frataxin, a highly conserved protein, that result from a large GAA triplet repeat expansion within the first intron of the frataxin gene (FXN). Typical marks of heterochromatin are found near the expanded GAA repeat in FRDA patient cells and mouse models. Histone deacetylase inhibitors (HDACIs) with a pimelic diphenylamide structure and HDAC3 specificity can decondense the chromatin structure at the FXN gene and restore frataxin levels in cells from FRDA patients and in a GAA repeat based FRDA mouse model, KIKI, providing an appealing approach for FRDA therapeutics. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to further improve the pharmacological profile of pimelic diphenylamide HDACIs as potential therapeutics for FRDA, we synthesized additional compounds with this basic structure and screened them for HDAC3 specificity. We characterized two of these compounds, 136 and 109, in FRDA patients' peripheral blood lymphocytes and in the KIKI mouse model. We tested their ability to upregulate frataxin at a range of concentrations in order to determine a minimal effective dose. We then determined in both systems the duration of effect of these drugs on frataxin mRNA and protein, and on total and local histone acetylation. The effects of these compounds exceeded the time of direct exposure in both systems. CONCLUSIONS/SIGNIFICANCE: Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACIs for FRDA and provide information for the design of future human trials of these drugs, suggesting an intermittent administration of the drug.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model
NOTICE: this is the author’s version of a work that was accepted for publication in Neurobiology of Disease. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.This work was supported by Repligen Corporation; Muscular Dystrophy Association
(MDA) USA; Ataxia UK; Friedreich's Ataxia Research Alliance (FARA); GoFAR; and the Wellcome Trust [089757]
Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation
Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C(21)H(19)FN(4)O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C(21)H(19)FN(4)O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually “tuned-in” to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control “informational capture” at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories
Michigan's Continuing Abolition of the Death Penalty and the Conceptual Components of Symbolic Legislation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68316/2/10.1177_096466399300200304.pd
Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich's ataxia.
The genetic defect in Friedreich's ataxia (FRDA) is the expansion of a GAA·TCC triplet in the first intron of the FXN gene, which encodes the mitochondrial protein frataxin. Previous studies have established that the repeats reduce transcription of this essential gene, with a concomitant decrease in frataxin protein in affected individuals. As the repeats do not alter the FXN protein coding sequence, one therapeutic approach would be to increase transcription of pathogenic FXN genes. Histone posttranslational modifications near the expanded repeats are consistent with heterochromatin formation and FXN gene silencing. In an effort to find small molecules that would reactivate this silent gene, histone deacetylase inhibitors were screened for their ability to up-regulate FXN gene expression in patient cells and members of the pimelic 2-aminobenzamide family of class I histone deacetylase inhibitors were identified as potent inducers of FXN gene expression and frataxin protein. Importantly, these molecules up-regulate FXN expression in human neuronal cells derived from patient-induced pluripotent stem cells and in two mouse models for the disease. Preclinical studies of safety and toxicity have been completed for one such compound and a phase I clinical trial in FRDA patients has been initiated. Furthermore, medicinal chemistry efforts have identified improved compounds with superior pharmacological properties.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tReviewFLWINSCOPUS: re.jinfo:eu-repo/semantics/publishe
- …