35 research outputs found

    Exactly solvable toy models of unconventional magnetic alloys: Bethe Ansatz versus Renormalization Group method

    Full text link
    We propose toy models of unconventional magnetic alloys, in which the density of band states, ρ(ϵ)\rho(\epsilon), and hybridization, t(ϵ)t(\epsilon), are energy dependent; it is assumed, however, that t2(ϵ)ρ1(ϵ)t^2(\epsilon)\propto\rho^{-1}(\epsilon), and hence an effective electron-impurity coupling Γ(ϵ)=ρ(ϵ)t2(ϵ)\Gamma(\epsilon)=\rho(\epsilon)t^2(\epsilon) is energy independent. In the renormalization group approach, the physics of the system is assumed to be governed by Γ(ϵ)\Gamma(\epsilon) only rather than by separate forms of ρ(ϵ)\rho(\epsilon) and t(ϵ)t(\epsilon). However, an exact Bethe Ansatz solution of the toy Anderson model demonstrates a crucial role of a form of inverse band dispersion k(ϵ)k(\epsilon).Comment: A final version. A previous one has been sent to Archive because of my technical mistake. Sorr

    Emission Spectrum of a Dipole in a Semi-infinite Periodic Dielectric Structure: Effect of the Boundary

    Full text link
    The emission spectrum of a dipole embedded in a semi-infinite photonic crystal is calculated. For simplicity we study the case in which the dielectric function is sinusoidally modulated only along the direction perpendicular to the boundary surface plane. In addition to oscillations of the emission rate with the distance of the dipole from the interface we also observed that the shape of the emission spectrum srongly depends on the \em initial \em phase of the dielectric modulation. When the direction of light propagation inside the periodic structure is not normal to the boundary surface plane we observed aditional singularities in the emission spectrum, which arise due to different angle-dependence of the Bragg stop-band for TETE and TMTM polarizations.Comment: 14 pages, 6 figures, to appear in Phys Rev

    Probing Interband Coulomb Interactions in Semiconductor Nanocrystals with 2D Double-Quantum Coherence Spectroscopy

    Full text link
    Using previously developed exciton scattering model accounting for the interband, i.e., exciton-biexciton, Coulomb interactions in semiconductor nanocrystals (NCs), we derive a closed set of equations for 2D double-quantum coherence signal. The signal depends on the Liouville space pathways which include both the interband scattering processes and the inter- and intraband optical transitions. These processes correspond to the formation of different cross-peaks in the 2D spectra. We further report on our numerical calculations of the 2D signal using reduced level scheme parameterized for PbSe NCs. Two different NC excitation regimes considered and unique spectroscopic features associated with the interband Coulomb interactions are identified.Comment: 11 pages, 5 figure

    Impact of uniaxial strain and doping on oxygen diffusion in CeO2

    Get PDF
    Doped ceria is an important electrolyte for solid oxide fuel cell applications. Molecular dynamics simulations have been used to investigate the impact of uniaxial strain along the directions and rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd, and La) on oxygen diffusion. We introduce a new potential model that is able to describe the thermal expansion and elastic properties of ceria to give excellent agreement with experimental data. We calculate the activation energy of oxygen migration in the temperature range 900-1900K for both unstrained and rare-earth doped ceria systems under tensile strain. Uniaxial strain has a considerable effect in lowering the activation energies of oxygen migration. A more pronounced increase in oxygen diffusivities is predicted at the lower end of the temperature range for all the dopants considered
    corecore