58 research outputs found

    Modern MT: A New Open-Source Machine Translation Platform for the Translation Industry

    Get PDF
    Modern MT (www.modernmt.eu) is a three-year Horizon 2020 innovation action (2015–2017) to develop new open-source machine translation technology for use in translation production environments, both fully automatic and as a back-end in interactive post-editing scenarios. Led by Translated srl, the project consortium also includes the Fondazione Bruno Kessler (FBK), the University of Edinburgh, and TAUS B.V. Modern MT has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 645487 (call ICT-17-2014)

    Quantile regression for overdispersed count data: a hierarchical method

    Get PDF
    Abstract Generalized Poisson regression is commonly applied to overdispersed count data, and focused on modelling the conditional mean of the response. However, conditional mean regression models may be sensitive to response outliers and provide no information on other conditional distribution features of the response. We consider instead a hierarchical approach to quantile regression of overdispersed count data. This approach has the benefits of effective outlier detection and robust estimation in the presence of outliers, and in health applications, that quantile estimates can reflect risk factors. The technique is first illustrated with simulated overdispersed counts subject to contamination, such that estimates from conditional mean regression are adversely affected. A real application involves ambulatory care sensitive emergency admissions across 7518 English patient general practitioner (GP) practices. Predictors are GP practice deprivation, patient satisfaction with care and opening hours, and region. Impacts of deprivation are particularly important in policy terms as indicating effectiveness of efforts to reduce inequalities in care sensitive admissions. Hierarchical quantile count regression is used to develop profiles of central and extreme quantiles according to specified predictor combinations

    Complexities of learning with computer-based tools: A case of inquiry about sound and music in elementary school

    Full text link
    Computer-based technology is increasingly becoming available for students at all grade levels in schools, and its promise and power as a learning tool is being extolled by many. From a constructive perspective, if individuals actively construct meaning from their experiences, then simply having particular tools to work with via a computer doesn't ensure that desired learning will result. Thus, it is important to examine how students construct meaning while using such tools. This study examined what fourth grade students learned from the use of two computer-based tools intended to help them understand sound and music: software that emulated an oscilloscope and allowed students to view sound waves from audio input; and software that turned the computer into an electronic keyboard, which provided students with standard pitches for comparison purposes. Principles of selective attention and pior knowledge and experiences —foundational ideas of a constructivist epistemology—were useful in understanding learning outcomes from inquiry with these tools. Our findings provide critical information for future instruction with the goal of supporting learning about sound and music from such tools. They also indicate the need for more studies examining learning from computer-based tools in specific contexts, to advance our understanding of how teachers can mediate student activity with computer-based tools to support the development of conceptual understanding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45183/1/10956_2005_Article_BF01677126.pd

    Distributed Multimedia Learning Environments: Why and How?

    Full text link

    High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure

    No full text
    Oxygen inhibits anammox, a bioconversion executed by anoxic ammonium oxidizing bacteria (AnAOB). Nonetheless, oxygen is mostly found in the proximity of AnAOB in nitrogen removal applications, being a substrate for nitritation. The experiments performed to date were mostly limited to batch activity tests where AnAOB activity is estimated during oxygen exposure. However, little attention has been paid to the recovery and reversibility of activity following aerobic conditions, of direct relevance for bioreactor operation. In this work, anoxic and autotrophic reactor cultivation at 20 degrees C yielded an enriched microbial community in AnAOB, consisting for 75% of a member of the genus Brocadia. High-resolution kinetic data were obtained with online ammonium measurements and further processed with a newly developed Python data pipeline. The experimentally obtained AnAOB response showed complete inhibition until micro-aerobic conditions were reached again (<0.02 mg O-2 L-1). After oxygen inhibition, AnAOB recovered gradually, with recovery times of 5-37 h to reach a steady-state activity, dependent on the perceived inhibition. The recovery immediately after inhibition was lowest when exposed to higher oxygen concentrations (range: 0.5-8 mg O-2 L-1) with long contact times (range: 9-24 h). The experimental data did not fit well with a conventional 'instant recovery' Monod-type inhibition model. Yet, the fit greatly improved by incorporating a dynamic growth rate formula accurately describing gradual activity recovery. With the upgraded model, long-term kinetic simulations for partial nitritation/anammox (PN/A) with intermittent aeration showed a decrease in growth rate compared to the instant recovery mode. These results indicate that recovery of AnAOB after oxygen exposure was previously overlooked. It is recommended to account for this effect in the intensification of partial nitritation/anammox. (C) 2018 Elsevier Ltd. All rights reserved
    corecore