42 research outputs found

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    5‑Diethylamino-naphthalene-1-sulfonyl Chloride (DensCl): A Novel Triplex Isotope Labeling Reagent for Quantitative Metabolome Analysis by Liquid Chromatography Mass Spectrometry

    No full text
    We describe a new set of isotope reagents, <sup>12</sup>C<sub>4</sub>-, <sup>12</sup>C<sub>2</sub><sup>13</sup>C<sub>2</sub>-, and <sup>13</sup>C<sub>4</sub>-5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl), in combination with liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), for improved analysis of the amine- and phenol-containing submetabolome. The synthesis of the reagents is reported, and an optimized derivatization protocol for labeling amines and phenols is described. To demonstrate the utility of the triplex reagents for metabolome profiling of biological samples, urine samples collected daily from a healthy volunteer over a period of 14 days were analyzed. The overall workflow is straightforward, including differential isotope labeling of individual samples and a pooled sample that serves a global internal standard, mixing of the isotope differentially labeled samples and LC-MS analysis for relative metabolome quantification. Comparing to the dansyl chloride (DnsCl) duplex isotope reagents, the new triplex DensCl reagents offer the advantages of improved metabolite detectability due to enhanced sensitivity (i.e., about 1000 peak pairs detected by DensCl labeling vs about 600 peak pairs detected by DnsCl labeling) and analysis speed (i.e., simultaneous analysis of two comparative samples by DensCl vs only one comparative sample analyzed by DnsCl)

    Computed Tomography Perfusion Imaging Detection of Microcirculatory Dysfunction in Small Intestinal Ischemia-Reperfusion Injury in a Porcine Model.

    No full text
    To evaluate multi-slice computed tomography (CT) perfusion imaging (CTPI) for identifying microcirculatory dysfunction in small intestinal ischemia-reperfusion (IR) injury in a porcine model.Fifty-two pigs were randomly divided into 4 groups: (1) the IR group (n = 24), where intestinal ischemia was induced by separating and clamping the superior mesenteric artery (SMA) for 2 h, followed by reperfusion for 1, 2, 3, and 4 h (IR-1h, IR-2h, IR-3h, and IR-4h; n = 6, respectively); (2) the sham-operated (SO) group (n = 20), where the SMA was separated without clamping and controlled at postoperative 3, 4, 5, and 6 h (SO-3h, SO-4h, SO-5h, and SO-6h; n = 5, respectively); (3) the ischemia group (n = 4), where the SMA was separated and clamped for 2 h, without reperfusion, and (4) baseline group (n = 4), an additional group that was not manipulated. Small intestinal CTPI was performed at corresponding time points and perfusion parameters were obtained. The distal ileum was resected to measure the concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) and for histopathological examination.The perfusion parameters of the IR groups showed significant differences compared with the corresponding SO groups and the baseline group (before ischemia). The blood flow (BF), blood volume (BV), and permeability surface (PS) among the 4 IR groups were significantly different. BF and BV were significantly negatively correlated with MDA, and significantly positively correlated with SOD in the IR groups. Histopathologically, the effects of the 2-h ischemic loops were not significantly exacerbated by reperfusion.CTPI can be a valuable tool for detecting microcirculatory dysfunction and for dynamic monitoring of small intestinal IR injury

    Preventive Effect of Alkaloids from Lotus plumule on Acute Liver Injury in Mice

    No full text
    Lotus plumule is a traditional Chinese food that can be used as a beverage. In this study, three kinds of Lotus plumules from different regions of China were selected to observe the preventive effects of extracted alkaloids on CCl4-induced liver injuries. Animal experiments revealed that alkaloids extracted from Lotus plumules decreased the serum AST (aspartate aminotransferase), ALT (alanine aminotransferase), and TBIL (total bilirubin) levels, enhanced SOD (superoxide dismutase) activity, and reduced MDA (malondialdehyde) level in the liver tissues of mice with liver injury. H&amp;E observation confirmed that alkaloids from Lotus plumules could alleviate CCl4-induced injuries of liver tissues and inhibit the inflammatory effect on hepatocytes. Further qPCR experiments also demonstrated that alkaloids from Lotus plumules upregulated the expression of I&kappa;B-&alpha; (inhibitor of NF-&kappa;B alpha), Cu/Zn-SOD (copper/zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), and CAT (catalase) mRNA and downregulated TNF-&alpha; (tumor necrosis factor alpha) and NF-&kappa;B (nuclear factor kappa B) expression in the liver tissues of mice with liver injury. All three kinds of alkaloids from Lotus plumules could prevent CCl4-induced liver injuries by regulating the levels of oxidative stress and inflammation in mice, and the therapeutic effect was comparable to that of silymarin, the medicine commonly used in the treatment of liver diseases. In summary, alkaloids from Lotus plumules contain bioactive substances with hepatic protective efficacy and possess potential application value in the field of functional food

    IsoMS: Automated Processing of LC-MS Data Generated by a Chemical Isotope Labeling Metabolomics Platform

    No full text
    A chemical isotope labeling or isotope coded derivatization (ICD) metabolomics platform uses a chemical derivatization method to introduce a mass tag to all of the metabolites having a common functional group (e.g., amine), followed by LC-MS analysis of the labeled metabolites. To apply this platform to metabolomics studies involving quantitative analysis of different groups of samples, automated data processing is required. Herein, we report a data processing method based on the use of a mass spectral feature unique to the chemical labeling approach, i.e., any differential-isotope-labeled metabolites are detected as peak pairs with a fixed mass difference in a mass spectrum. A software tool, IsoMS, has been developed to process the raw data generated from one or multiple LC-MS runs by peak picking, peak pairing, peak-pair filtering, and peak-pair intensity ratio calculation. The same peak pairs detected from multiple samples are then aligned to produce a CSV file that contains the metabolite information and peak ratios relative to a control (e.g., a pooled sample). This file can be readily exported for further data and statistical analysis, which is illustrated in an example of comparing the metabolomes of human urine samples collected before and after drinking coffee. To demonstrate that this method is reliable for data processing, five <sup>13</sup>C<sub>2</sub>-/<sup>12</sup>C<sub>2</sub>-dansyl labeled metabolite standards were analyzed by LC-MS. IsoMS was able to detect these metabolites correctly. In addition, in the analysis of a <sup>13</sup>C<sub>2</sub>-/<sup>12</sup>C<sub>2</sub>-dansyl labeled human urine, IsoMS detected 2044 peak pairs, and manual inspection of these peak pairs found 90 false peak pairs, representing a false positive rate of 4.4%. IsoMS for Windows running R is freely available for noncommercial use from www.mycompoundid.org/IsoMS

    Preventive effect of insect tea primary leaf (Malus sieboldii (Regal) Rehd.) extract on D-galactose-induced oxidative damage in mice

    No full text
    Insect tea is consumed as a health beverage in China. The insect tea primary leaf (ITPL) is rich in bioactive substances, which are also used as traditional Chinese medicine. This study investigated the role of ITPL in reducing the oxidative response induced by D-galactose in mice. Mice were intraperitoneally injected with D-galactose to induce oxidative damage. The effect of ITPL was tested by pathological observation, serum detection with kits, quantitative polymerase chain reaction, and Western blot. The experimental results show that ITPL increased the thymus, brain, heart, liver, spleen, and kidney indices of oxidized mice. ITPL increased superoxide dismutase, glutathione peroxidase, and glutathione levels and reduced nitric oxide and malondialdehyde levels in the serum, liver, and spleen in oxidative damaged mice. The pathological observations show that ITPL reduced the oxidative damage of the liver and spleen in mice induced with D-galactose. Simultaneously, ITPL upregulated mRNA expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc-superoxide dismutase, manganese superoxide dismutase, catalase, heme oxygenase-1, nuclear factor-erythroid 2 related factor 2, γ-glutamylcysteine synthetase, and NAD(P)H dehydrogenase [quinone] 1, and downregulated the expression of inducible nitric oxide synthase in the liver and spleen of oxidized mice. ITPL had beneficial preventive effects on the oxidative damage caused by D-galactose in mice and was more effective as an antioxidant than vitamin C. The component analysis test by high-performance liquid chromatography indicated that ITPL contained the following seven compounds: neochlorogenic acid, cryptochlorogenic acid, rutin, kaempferin, isochlorogenic acid B, isochlorogenic acid A, and hesperidin. ITPL is a plant with excellent antioxidant activities derived from its bioactive substances

    Lactobacillus Plantarum HFY15 Helps Prevent Retinoic Acid-Induced Secondary Osteoporosis in Wistar Rats

    No full text
    A rat model of secondary osteoporosis was constructed using retinoic acid as an inducer, and the genes, proteins, and bone mass of the rats were analyzed. qPCR detection of the Wnt/β-catenin and OPG/RANK/RANKL signaling pathway-related gene expression levels showed that Lactobacillus plantarum HFY15 played a positive role in regulating both pathways. HFY15 significantly increased β-catenin, Lrp5, Lrp6, Wnt10b, OPG, RANKL, and Runx2 expression and downregulated DKK1, RANK, CTSK, TRACP, and ALP expression. Enzyme-linked immunosorbent assays further confirmed the qPCR results. Tartrate-resistant acid phosphatase staining showed that HFY15 slowed retinoic acid-induced osteoclast formation. Microcomputed tomography showed that HFY15 reduced trabecular separation and increased the percent bone volume, trabecular numbers, trabecular thickness, and bone mineral density in the rats in vivo. These findings indicate that HFY15 may help prevent retinoic acid-induced secondary osteoporosis in vivo

    USING EMISSION QUENCHING TO STUDY THE INTERACTION BETWEEN ZnO

    No full text

    Lactobacillus plantarum KSFY06 on d-galactose-induced oxidation and aging in Kunming mice

    No full text
    Yogurt from Xinjiang, China, is a traditional Chinese fermented food rich in beneficial microorganisms, such as Lactobacillus plantarum KSFY06. In this study, the effect of KSFY06 on oxidative aging was investigated using live animal experiments. Molecular biological methods were used to analyze the serum and tissues of mice with oxidative aging induced by d-galactose, which showed that KSFY06 can inhibit the decline of heart, liver, spleen, and kidney caused by aging. The KSFY06 strain increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione (GSH) in serum and liver of aging mice, while the content of malondialdehyde (MDA) is reduced. Pathological observation showed that KSFY06 alleviated damage to the liver, spleen, and skin of oxidative aging mice. qPCR showed that, at high dose (2 × 109 cfu/kg per day), KSFY06 upregulates copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), catalase (CAT) mRNA expression, and its downstream inducible nitric oxide synthase (iNOS) mRNA expression in liver and spleen tissues induced by d-gal. To a certain extent, these findings indicate that L. plantarum KSFY06 is able to protect against oxidative stress in the d-gal-induced aging model. In conclusion, L. plantarum KSFY06 may provide a potential research value in the prevention or alleviation of related diseases caused by oxidative stress
    corecore