48 research outputs found

    Majorana Demonstrator Data Release for AI/ML Applications

    Full text link
    The enclosed data release consists of a subset of the calibration data from the Majorana Demonstrator experiment. Each Majorana event is accompanied by raw Germanium detector waveforms, pulse shape discrimination cuts, and calibrated final energies, all shared in an HDF5 file format along with relevant metadata. This release is specifically designed to support the training and testing of Artificial Intelligence (AI) and Machine Learning (ML) algorithms upon our data. This document is structured as follows. Section I provides an overview of the dataset's content and format; Section II outlines the location of this dataset and the method for accessing it; Section III presents the NPML Machine Learning Challenge associated with this dataset; Section IV contains a disclaimer from the Majorana collaboration regarding the use of this dataset; Appendix A contains technical details of this data release. Please direct questions about the material provided within this release to [email protected] (A. Li).Comment: Zenodo DOI: https://doi.org/10.5281/zenodo.825702

    Constraints on the decay of 180m^{180m}Ta

    Full text link
    180m^{180m}Ta is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime surpasses the half-lives of all other known β\beta and electron capture decays due to the large K-spin differences and small energy differences between the isomeric and lower energy states. Detecting its decay presents a significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms, the nature of dark matter and K-spin violation. For this study, we repurposed the MAJORANA DEMONSTRATOR, an experimental search for the neutrinoless double-beta decay of 76^{76}Ge using an array of high-purity germanium detectors, to search for the decay of 180m^{180m}Ta. More than 17 kilograms, the largest amount of tantalum metal ever used for such a search was installed within the ultra-low background detector array. In this paper we present results from the first year of Ta data taking and provide an updated limit for the 180m^{180m}Ta half-life on the different decay channels. With new limits up to 1.5 x 101910^{19} years, we improved existing limits by one to two orders of magnitude. This result is the most sensitive search for a single β\beta and electron capture decay ever achieved
    corecore