805 research outputs found

    TEACHING IN THE CLOUD MICROELECTRONICS UBIQUITOUS LAB (MULAB)

    Get PDF
    CAD laboratory students activity is mandatory for microelectronics teaching. This, applied in the deep-submicron era, creates new challenges to couple software management simplicity to user friendliness inside lab sessions, which requires the use of complex tools and concepts. In this paper, a new approach to microelectronics CAD deployment is presented, based on virtualization capabilities of new servers hardware and software technology. A test case, realized at Politecnico di Torino, degree of Electronic Engineering, is presented, with real world results on resource consumption and user satisfactio

    Particle Acceleration in Mildly Relativistic Shearing Flows: the Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Full text link
    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although the electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker--Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.Comment: 26 pages, 8 figures; to appear in Ap

    Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

    Full text link
    We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest

    vrLab: A Virtual and Remote Low Cost Electronics Lab Platform

    Get PDF
    SARS-CoV2 pandemic stressed the need to increase adoption of remote teaching. Technical courses, specifically electronic engineering ones, suffered the miss of real lab experiments directly carried out by students. In this paper a new approach is presented, based on the usage of very low cost experimental boards, which act both as a measurement instrument and a programmable prototype circuit. A first board, targeted to analog and digital electronics courses experiments, has been designed, and is described in this paper

    Spontaneous Octahedral Tilting in the Cubic Inorganic Caesium Halide Perovskites CsSnX3_3 and CsPbX3_3 (X = F, Cl, Br, I)

    Full text link
    The local crystal structures of many perovskite-structured materials deviate from the average space group symmetry. We demonstrate, from lattice-dynamics calculations based on quantum chemical force constants, that all the caesium-lead and caesium-tin halide perovskites exhibit vibrational instabilities associated with octahedral titling in their high-temperature cubic phase. Anharmonic double-well potentials are found for zone-boundary phonon modes in all compounds with barriers ranging from 108 to 512 meV. The well depth is correlated with the tolerance factor and the chemistry of the composition, but is not proportional to the imaginary harmonic phonon frequency. We provide quantitative insights into the thermodynamic driving forces and distinguish between dynamic and static disorder based on the potential-energy landscape. A positive band gap deformation (spectral blueshift) accompanies the structural distortion, with implications for understanding the performance of these materials in applications areas including solar cells and light-emitting diodes
    • …
    corecore