6 research outputs found

    Variations in Soil Nitrogen Availability and Crop Yields under a Three-Year Annual Wheat and Maize Rotation in a Fluvo-Aquic Soil

    No full text
    Optimum tillage practices can create a suitable soil environment, and they improve the soil nutrient status to ensure crop development and yield. In this study, we evaluated the influences of six tillage practices on soil nutrients and maize yields from 2017 to 2019 in fluvo-aquic soil in the North China Plain. The field experiment was carried out by a split design with rotary tillage (RT) and deep tillage (DT) in wheat season in the main plot and no-tillage (NT), subsoiling between the row (SBR), and subsoiling in the row (SIR) in maize season in the subplot. The results showed that the soil nutrient content was higher under the treatments with rotary tillage in the wheat season in the 0–20 cm soil layer, while in the 20–40 cm soil layer, the soil nutrient content was higher under the treatments with deep tillage in the wheat season. The integrated principal component scores indicated that the soil nutrients had improved in the second year. The ecosystem multifunctionality (EMF) index was higher with the treatments with rotary tillage in wheat season in the 0–20 cm soil layer, while it was the highest under DT-SIR at 20–40 cm. Correlation analysis showed that the soil EMF index correlated significantly (p < 0.05) with the soil nutrient content mainly in the 0–40 cm soil layer. The higher maize yield was under the treatments with deep tillage compared to that under the treatments with rotary tillage in the wheat season. The yield-increasing effect was higher under the treatments with subsoiling than those utilizing no-till in the maize season, with the highest average yield of 13,910 kg hm−2 in the DT-SIR during the three years. Maize yield was strongly correlated with nutrients in the subsoil layer. The higher yield stability was found under RT-NT. To sum up, during the three-year experiment, rotary tillage in the wheat season combined with subsoiling in the maize season improved the soil nutrient content and the EMF index in the 0–20 cm layer, while the combination of deep tillage in the wheat season and subsoiling in the maize season improved those indices in the 20–40 cm soil layer, and increased the maize yield, the best one was under DT-SIR

    A Flexible Wearable Antenna with Annular Solar Eclipse Structure for ISM/WLAN/WIMAX/Bluetooth Applications

    No full text
    This paper proposes a wearable flexible dual-band antenna that covers the 2.34–2.68 GHz and 4.05–5.26 GHz frequency bands. This antenna employs a novel nested imitation annular solar eclipse structure, where the main radiator is a gradually widening loop, and another loop is coupled inside the radiator. The antenna, with overall dimensions of 40∗32∗0.3 mm³, utilizes polyimide as the dielectric material. The gain, efficiency, and cross-polarization of the antenna were tested using a microwave anechoic chamber. The antenna achieves a maximum gain of 6 dBi and a maximum efficiency of 79.6%. We tested the SAR of the antenna at 10 mm from the human body, which was significantly below the international standard of 2.0 W/kg. The flexible antenna presented in this paper exhibits a broad low-frequency bandwidth, enabling coverage of various communication bands such as ISM, WLAN, WIMAX, and Bluetooth. The antenna delivers satisfactory simulation and measurement results while meeting the requirements of minimizing radiation exposure to the human body

    A Wearable Self-Grounding Slit Antenna for ISM/4G/5G/Bluetooth/WLAN Applications

    No full text
    This design proposes a self-grounding semi-circular gap dual-band flexible antenna in the context of the rapid development of wireless body area networks. The antenna combines the slit structure with the characteristics of traditional rectangular monopole antenna to realize dual-band. In addition, the antenna’s grounding structure adopts the self-grounding structure, which is less used nowadays, to extend the bandwidth. The antenna is designed on a dielectric board of polyimide material with a relative dielectric constant of 3.5. The overall dimensions of the antenna are 44 mm ×40\times 40 mm ×0.2\times 0.2 mm with two different sized gaps in a rectangular patch, similar to the geometry of an umbrella handle. Measured data shows that the structure has higher gain and efficiency in the bent state than in the flat state, making it ideal for wearable smart terminals. It can be combined with a smart armband for sports and medical applications or for a single soldier wearable wristband smartwatch. The article explores the effect of different slot sizes and different bending angles on the performance of the antenna, as well as the specific absorption rate values of the antenna for the human body. Finally, two frequency bands with good omnidirectional radiation characteristics are obtained: 2.38–2.81 GHz and 4.28–5.10 GHz. The antenna covers ISM, 4G, 5G, Bluetooth, WLAN, and other common communication frequency bands. The results of the study show that the design method is highly reliable

    Evaluating the Efficacy of Sentinel-2B and Landsat-8 for Estimating and Mapping Wheat Straw Cover in Rice–Wheat Fields

    No full text
    Sustainable agriculture and soil conservation methods are integral to ensuring food safety and mitigating environmental impacts worldwide. However, crop residue/straw serves many vital functions from tillage to harvest, so that quantifying the appropriate amount of Crop Straw Cover (CSC) on the soil surface is crucial for monitoring tillage intensity and crop yield performance. Thus, a novel research study is conducted to develop an innovative approach for accurately estimating and mapping the Wheat Straw Cover (WSC) percentage through two different multispectral satellites (Sentinel-2B MSI and Landsat-8 OLI-TIRS), using remote sensing-based techniques in Changshu County, China. The field measurements were collected from 80 distinct sites and eight images were acquired through both satellites for the analysis process by applying Crop Residue Indices (CRIs). The results indicate that the coefficients of determination (R2) of the Normalized Difference Tillage Index (NDTI) computed by Sentinel-2 and Landsat-8 were 0.80 and 0.70, respectively, and the root-mean-square deviation (RMSD) values were in the range from 6.88 to 12.04% for CRIs for both satellite data. Additionally, the comparative analysis of the developed model revealed that NDTI was R2 = 0.85 and R2 = 0.77, followed by STI, R2 = 0.82 and R2 = 0.80 and NDRI, R2 = 0.69 and R2 = 0.56 for Sentinel-2B and Landsat-8 data, respectively. Hence, the correlation strength of NDTI, STI and NDRI with WSC percentages was markedly superior by using Sentinel-2B spectral data compared to Landsat-8 ones. Moreover, the NDTI of Sentinel-2B data was the most accurate in mapping the WSC percentage in four categories, with an overall accuracy of 86.53% (κ = 0.78), surpassing the other CRI indices. Therefore, these findings suggest that the multispectral imagery of Sentinel-2B bolstered with enhanced temporal and spatial data was superior for precisely estimating and mapping the WSC percentage compared to Landsat-8 data over a large-scale agricultural region

    Variations in Soil Nitrogen Availability and Crop Yields under a Three-Year Annual Wheat and Maize Rotation in a Fluvo-Aquic Soil

    No full text
    Optimum tillage practices can create a suitable soil environment, and they improve the soil nutrient status to ensure crop development and yield. In this study, we evaluated the influences of six tillage practices on soil nutrients and maize yields from 2017 to 2019 in fluvo-aquic soil in the North China Plain. The field experiment was carried out by a split design with rotary tillage (RT) and deep tillage (DT) in wheat season in the main plot and no-tillage (NT), subsoiling between the row (SBR), and subsoiling in the row (SIR) in maize season in the subplot. The results showed that the soil nutrient content was higher under the treatments with rotary tillage in the wheat season in the 0–20 cm soil layer, while in the 20–40 cm soil layer, the soil nutrient content was higher under the treatments with deep tillage in the wheat season. The integrated principal component scores indicated that the soil nutrients had improved in the second year. The ecosystem multifunctionality (EMF) index was higher with the treatments with rotary tillage in wheat season in the 0–20 cm soil layer, while it was the highest under DT-SIR at 20–40 cm. Correlation analysis showed that the soil EMF index correlated significantly (p −2 in the DT-SIR during the three years. Maize yield was strongly correlated with nutrients in the subsoil layer. The higher yield stability was found under RT-NT. To sum up, during the three-year experiment, rotary tillage in the wheat season combined with subsoiling in the maize season improved the soil nutrient content and the EMF index in the 0–20 cm layer, while the combination of deep tillage in the wheat season and subsoiling in the maize season improved those indices in the 20–40 cm soil layer, and increased the maize yield, the best one was under DT-SIR
    corecore