101 research outputs found
Exact ground-state correlation functions of the one-dimensional strongly correlated electron models with the resonating-valence-bond ground state
We investigate the one-dimensional strongly correlated electron models which
have the resonating-valence-bond state as the exact ground state. The
correlation functions are evaluated exactly using the transfer matrix method
for the geometric representations of the valence-bond states. In this method,
we only treat matrices with small dimensions. This enables us to give
analytical results. It is shown that the correlation functions decay
exponentially with distance. The result suggests that there is a finite
excitation gap, and that the ground state is insulating. Since the
corresponding non-interacting systems may be insulating or metallic, we can say
that the gap originates from strong correlation. The persistent currents of the
present models are also investigated and found to be exactly vanishing.Comment: 59 pages, REVTeX 3.0, Figures are available on reques
Engineering kidneys from simple cell suspensions:an exercise in self-organization
Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells’ self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy
- …