54 research outputs found

    Sums of products of two reciprocal Fibonacci numbers

    Get PDF

    Detecting Abrupt Change of Channel Covariance Matrix in IRS-Assisted Communication

    Full text link
    The knowledge of channel covariance matrices is crucial to the design of intelligent reflecting surface (IRS) assisted communication. However, channel covariance matrices may change suddenly in practice. This letter focuses on the detection of the above change in IRS-assisted communication. Specifically, we consider the uplink communication system consisting of a single-antenna user (UE), an IRS, and a multi-antenna base station (BS). We first categorize two types of channel covariance matrix changes based on their impact on system design: Type I change, which denotes the change in the BS receive covariance matrix, and Type II change, which denotes the change in the IRS transmit/receive covariance matrix. Secondly, a powerful method is proposed to detect whether a Type I change occurs, a Type II change occurs, or no change occurs. The effectiveness of our proposed scheme is verified by numerical results.Comment: accepted by IEEE Wireless Communications Letter

    NB-IoT Uplink Synchronization by Change Point Detection of Phase Series in NTNs

    Full text link
    Non-Terrestrial Networks (NTNs) are widely recognized as a potential solution to achieve ubiquitous connections of Narrow Bandwidth Internet of Things (NB-IoT). In order to adopt NTNs in NB-IoT, one of the main challenges is the uplink synchronization of Narrowband Physical Random Access procedure which refers to the estimation of time of arrival (ToA) and carrier frequency offset (CFO). Due to the large propagation delay and Doppler shift in NTNs, traditional estimation methods for Terrestrial Networks (TNs) can not be applied in NTNs directly. In this context, we design a two stage ToA and CFO estimation scheme including coarse estimation and fine estimation based on abrupt change point detection (CPD) of phase series with machine learning. Our method achieves high estimation accuracy of ToA and CFO under the low signal-noise ratio (SNR) and large Doppler shift conditions and extends the estimation range without enhancing Random Access preambles

    Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

    Full text link
    Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, obviating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment regularization stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.Comment: NeurIPS 2023 (Spotlight); 37 pages, 16 figures, 15 tables; Code at https://github.com/youquanl/Segment-Any-Point-Clou

    Towards Label-free Scene Understanding by Vision Foundation Models

    Full text link
    Vision foundation models such as Contrastive Vision-Language Pre-training (CLIP) and Segment Anything (SAM) have demonstrated impressive zero-shot performance on image classification and segmentation tasks. However, the incorporation of CLIP and SAM for label-free scene understanding has yet to be explored. In this paper, we investigate the potential of vision foundation models in enabling networks to comprehend 2D and 3D worlds without labelled data. The primary challenge lies in effectively supervising networks under extremely noisy pseudo labels, which are generated by CLIP and further exacerbated during the propagation from the 2D to the 3D domain. To tackle these challenges, we propose a novel Cross-modality Noisy Supervision (CNS) method that leverages the strengths of CLIP and SAM to supervise 2D and 3D networks simultaneously. In particular, we introduce a prediction consistency regularization to co-train 2D and 3D networks, then further impose the networks' latent space consistency using the SAM's robust feature representation. Experiments conducted on diverse indoor and outdoor datasets demonstrate the superior performance of our method in understanding 2D and 3D open environments. Our 2D and 3D network achieves label-free semantic segmentation with 28.4% and 33.5% mIoU on ScanNet, improving 4.7% and 7.9%, respectively. And for nuScenes dataset, our performance is 26.8% with an improvement of 6%. Code will be released (https://github.com/runnanchen/Label-Free-Scene-Understanding)

    Rethinking Range View Representation for LiDAR Segmentation

    Full text link
    LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point- or voxel-based methods as they often yield better performance than the traditional range view representation. In this work, we unveil several key factors in building powerful range view models. We observe that the "many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections. We present RangeFormer -- a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing -- that better handles the learning and processing of LiDAR point clouds from the range view. We further introduce a Scalable Training from Range view (STR) strategy that trains on arbitrary low-resolution 2D range images, while still maintaining satisfactory 3D segmentation accuracy. We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks, i.e., SemanticKITTI, nuScenes, and ScribbleKITTI.Comment: ICCV 2023; 24 pages, 10 figures, 14 tables; Webpage at https://ldkong.com/RangeForme
    corecore