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Abstract
In this paper, we employ elementary methods to investigate the reciprocal sums of
the products of two Fibonacci numbers in several ways. First, we consider the sums of
the reciprocals of the products of two Fibonacci numbers and establish five
interesting families of identities. Then we extend such analysis to the alternating sums
and obtain five analogous results.
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1 Introduction
For an integer n ≥ , the Fibonacci number Fn is defined by

Fn = Fn– + Fn– for n ≥ ,

with F =  and F = . There exists a simple and nonobvious formula for the Fibonacci
numbers:

Fn =
√


(
 +

√




)n

–
√


(
 –

√




)n

.

The Fibonacci numbers play an important role in the theory and applications of math-
ematics, and its various properties have been investigated by many authors; see [–].

In recent years, there has been an increasing interest in studying the reciprocal sums of
the Fibonacci numbers. For example, Elsner, Shimomura, and Shiokawa [–] investigated
algebraic relations for reciprocal sums of the Fibonacci numbers. Ohtsuka and Nakamura
[] studied the partial infinite sums of the reciprocal Fibonacci numbers. They established
the following results, where �·� denotes the floor function.

Theorem . For all n ≥ ,

⌊( ∞∑
k=n


Fk

)–⌋
=

{
Fn– if n is even;
Fn– –  if n is odd.
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Theorem . For each n ≥ ,

⌊( ∞∑
k=n


F

k

)–⌋
=

{
FnFn– –  if n is even;
FnFn– if n is odd.

Recently, Wang and Wen [] considered the partial finite sums of the reciprocal
Fibonacci numbers and strengthened Theorem . and Theorem . to the finite-sum case.

Theorem .
(i) For all n ≥ ,

⌊( n∑
k=n


Fk

)–⌋
= Fn–.

(ii) If m ≥  and n ≥ , then

⌊( mn∑
k=n


Fk

)–⌋
=

{
Fn– if n is even;
Fn– –  if n is odd.

Theorem . For all m ≥  and n ≥ , we have

⌊( mn∑
k=n


F

k

)–⌋
=

{
FnFn– –  if n is even;
FnFn– if n is odd.

Furthermore, Wang and Zhang [] studied the reciprocal sums of the Fibonacci num-
bers with even or odd indexes and obtained the following main results.

Theorem . We have

⌊( mn∑
k=n


Fk

)–⌋
=

{
Fn– if m =  and n ≥ ;
Fn– –  if m ≥  and n ≥ .

Theorem . For all n ≥  and m ≥ , we have

⌊( mn∑
k=n


Fk–

)–⌋
= Fn–.

Theorem . If n ≥  and m ≥ , then

⌊( mn∑
k=n


F

k

)–⌋
= Fn– – .

Theorem . For all n ≥  and m ≥ , we have

⌊( mn∑
k=n


F

k–

)–⌋
= Fn–.
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More recently, Wang and Zhang [] proceeded with investigating the reciprocal sums
of the Fibonacci numbers according to the subscripts modulo  and found many identities.
Here are a few examples.

Theorem .
(i) For all n ≥ ,

⌊( n∑
k=n


Fk

)–⌋
= Fn–.

(ii) If m ≥  and n ≥ , then

⌊( mn∑
k=n


Fk

)–⌋
=

{
Fn– if n is even;
Fn– –  if n is odd.

Theorem . If n ≥  and m ≥ , we have

⌊( mn∑
k=n


F

k

)–⌋
=

{
F

n – F
n– if n is even;

F
n – F

n– –  if n is odd.

In this article, we focus ourselves on the sums and alternating sums of the products of
two reciprocal Fibonacci numbers. By evaluating the integer parts of these sums, we obtain
several interesting families of identities concerning the Fibonacci numbers.

2 Main results I: reciprocal sums
We first introduce several well-known results on the Fibonacci numbers, which will be
used throughout the article. The detailed proofs can be found in, for example, [] and [].

Lemma . For any positive integers m and n, we have

FmFn + Fm+Fn+ = Fm+n+. (.)

Lemma . If n ≥ , then

Fn = F
n+ – F

n–, (.)

Fn+ = Fn+Fn+ – Fn–Fn. (.)

Lemma . Let a, b, c, d be positive integers with a + b = c + d and b ≥ max{c, d}. Then

FaFb – FcFd = (–)a+Fb–cFb–d. (.)

2.1 Reciprocal sum of FkFk+1

Lemma . For all n ≥ , we have

F
n+ +  >

(
F

n+ + 
) > FnFn+

(
F

n+ + 
)
. (.)
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Proof It follows from (.) that Fn+ = F
n + F

n+. Hence,

F
n+ +  = F

n + F
n F

n+ + F
n+ +  > F

n+ + F
n+ +  =

(
F

n+ + 
).

It is clear that F
n+ ≥ FnFn+; therefore, F

n+ +  > FnFn+, which yields the second inequal-
ity. �

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n


FkFk+

)–⌋
=

{
F

n if n is even;
F

n –  if n is odd.

Proof We first consider the case where n is even. By elementary manipulations and setting
a = k – , b = k + , and c = d = k in (.), we obtain, for k ≥ ,


F

k
–


FkFk+

–


F
k+

=
F

k+ – FkFk+ – F
k

F
k F

k+

=
Fk–Fk+ – F

k
F

k F
k+

=
(–)k

F
k F

k+
. (.)

Now we have

mn∑
k=n


FkFk+

=


F
n

–


F
mn+

+
mn∑
k=n

(–)k–

F
k F

k+
.

Since n is even, it is easy to see that

mn∑
k=n

(–)k–

F
k F

k+
< ,

which implies that

mn∑
k=n


FkFk+

<


F
n

. (.)

A direct calculation shows that, for k ≥ ,


F

k + 
–


FkFk+

–


F
k+ + 

=
FkFk+(F

k+ – F
k ) – (F

k + )(F
k+ + )

(F
k + )FkFk+(F

k+ + )

=
FkFk+(F

k+ – F
k – FkFk+) – F

k – F
k+ – 

(F
k + )FkFk+(F

k+ + )

=
FkFk+(Fk–Fk+ – F

k ) – F
k – F

k+ – 
(F

k + )FkFk+(F
k+ + )
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=
(–)kFkFk+ – F

k – F
k+ – 

(F
k + )FkFk+(F

k+ + )

< .

Therefore,

mn∑
k=n


FkFk+

=


F
n + 

–


F
mn+ + 

+
mn∑
k=n

(–)k–FkFk+ + F
k + F

k+ + 
(F

k + )FkFk+(F
k+ + )

>


F
n + 

–


F
n+ + 

+
F

n + F
n+ +  – FnFn+

(F
n + )FnFn+(F

n+ + )

>


F
n + 

+


FnFn+(F
n+ + )

–


F
n+ + 

>


F
n + 

, (.)

where the last inequality follows from (.).
Combining (.) and (.), we have


F

n + 
<

mn∑
k=n


FkFk+

<


F
n

,

which means that the statement is true when n is even.
We now concentrate ourselves on the case where n is odd. It is obviously true for n = .

Now we assume that n ≥ . A similar calculation shows that, for k ≥ ,


F

k – 
–


FkFk+

–


F
k+ – 

=
(–)kFkFk+ + F

k + F
k+ + 

(F
k – )FkFk+(F

k+ – )
> ,

from which we get

mn∑
k=n


FkFk+

<


F
n – 

–


F
mn+ – 

<


F
n – 

. (.)

It follows from (.) that

Fn+ = Fn–Fn+ + FnFn+ = F
n + F

n+,

which implies that Fn+ ≥ FnFn+, and Fn+ > Fn+ > F
n+. Therefore,

F
n+Fn+ > F

n F
n+F

n+. (.)

Invoking (.), (.), and the fact n is odd, we have

mn∑
k=n


FkFk+

=


F
n

–


F
mn+

+
mn∑
k=n

(–)k–

F
k F

k+

>


F
n

–


F
n+

+


F
n F

n+
–


F

n+F
n+
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=


F
n

+
F

n+ – F
n

F
n F

n+F
n+

–


F
n+

=


F
n

+
Fn+

F
n F

n+F
n+

–
Fn+

F
n+Fn+

>


F
n

, (.)

where the last inequality follows from (.).
Combining (.) and (.) yields that


F

n
<

mn∑
k=n


FkFk+

<


F
n – 

,

from which the desired result follows immediately. �

2.2 Reciprocal sum of F2k–1F2k

Lemma . For all n ≥ , we have

Fn+ > Fn–Fn(Fn+ + ).

Proof Applying (.) repeatedly, we have

Fn+ = F
n+ + F

n > F
n+ + Fn+ = Fn+(Fn+ + ) > Fn–Fn(Fn+ + ),

which completes the proof. �

Theorem . For all n ≥  and m ≥ ,

⌊( mn∑
k=n


Fk–Fk

)–⌋
= Fn–.

Proof It follows from (.) that

Fn+ = Fn+Fn+ – Fn–Fn, (.)

Fn– = Fn–Fn – Fn–Fn–. (.)

Employing (.), we can easily get that

Fn–Fn+ = Fn–Fn – , (.)

Fn–Fn+ = Fn–Fn + . (.)

Applying (.), (.), (.), and (.), it is easy to see that, for all k ≥ ,


Fk–

–


Fk–Fk
–


Fk+

=
Fk–Fk(Fk+ – Fk–) – Fk–Fk+

Fk–Fk–FkFk+

=
Fk–Fk–Fk+Fk+ – F

k–F
k

Fk–Fk–FkFk+
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=
Fk–Fk – 

Fk–Fk–FkFk+

> ,

which implies that

mn∑
k=n


Fk–Fk

<
mn∑
k=n

(


Fk–
–


Fk+

)
=


Fn–

–


Fmn+
<


Fn–

. (.)

It follows from (.) that

Fn+ > Fn = Fn–Fn + FnFn+ > Fn–Fn + .

Therefore, by (.) we obtain

Fn+ – Fn–Fn– > Fn–Fn – Fn–Fn– +  = Fn– + . (.)

Elementary manipulations and (.) yield, for k ≥ ,


Fk– + 

–


Fk–Fk
–


Fk+ + 

=
Fk–Fk– – Fk+ – 

(Fk– + )Fk–Fk(Fk+ + )

<
–

Fk–Fk(Fk+ + )
.

Now we can deduce that

mn∑
k=n


Fk–Fk

>


Fn– + 
–


Fmn+ + 

+
mn∑
k=n


Fk–Fk(Fk+ + )

>


Fn– + 
+


Fn–Fn(Fn+ + )

–


Fmn+ + 

>


Fn– + 
+


Fn–Fn(Fn+ + )

–


Fn+ + 

>


Fn– + 
, (.)

where the last inequality follows from Lemma ..
Combining (.) and (.), we deduce


Fn– + 

<
mn∑
k=n


Fk–Fk

<


Fn–
,

which yields the desired identity. �

Similarly, we can prove the following result, whose proof is left as an exercise to the
readers.

Theorem . For all n ≥  and m ≥ ,

⌊( mn∑
k=n


FkFk+

)–⌋
= Fn– – .
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2.3 Reciprocal sum of F2k–1F2k+1

Lemma . For all n ≥ , we have

F
n+ – F

n– > Fn–Fn+.

Proof It is easy to check that

F
n+ – F

n– = (Fn+ – Fn–)(Fn+ + Fn–)

> (Fn+ + Fn–)(Fn+ + Fn–)

= F
n+ + F

n– + Fn–Fn+

= (Fn+ – Fn–) + Fn–Fn+

> Fn–Fn+. �

Lemma . If n ≥ , then

Fn+ > (Fn– + )(Fn+ + ).

Proof It follows from (.) that

Fn+ = F
n+ – F

n = (Fn+ – Fn)(Fn+ + Fn) = Fn+(Fn+ + Fn).

It is obvious that Fn+ > Fn– +  and Fn > , which completes the proof. �

Theorem . For all n ≥  and m ≥ ,

⌊( mn∑
k=n


Fk–Fk+

)–⌋
= Fn–.

Proof Employing (.), we can readily see that

Fn+ = F
n+ – F

n = Fn+(Fn+ + Fn) = F
n+ + FnFn+,

Fn– = F
n – F

n– = Fn–(Fn + Fn–) = Fn–Fn – F
n–.

Applying (.), we can establish the following identities:

F
n+ = FnFn+ + ,

F
n– = Fn–Fn + ,

F
n = Fn–Fn+ + .

With the help of these identities, we now arrive at

Fn+ – Fn– = F
n+ + F

n– + FnFn+ – Fn–Fn

= F
n+ + F

n– + F
n
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= (FnFn+ + ) + (Fn–Fn + ) + (Fn–Fn+ + ) + F
n

= (Fn+ + Fn)(Fn + Fn–) + 

=
Fn+Fn–

Fn–Fn+
+ . (.)

Elementary manipulations and (.) yield that, for k ≥ ,


Fk–

–


Fk–Fk+
–


Fk+

=
Fk–Fk+(Fk+ – Fk–) – Fk–Fk+

Fk–Fk–Fk+Fk+

=
Fk–Fk+

Fk–Fk–Fk+Fk+

> , (.)

which implies that

mn∑
k=n


Fk–Fk+

<
mn∑
k=n

(


Fk–
–


Fk+

)
=


Fn–

–


Fmn+
<


Fn–

. (.)

Invoking (.) and Lemma ., we have


Fk– + 

–


Fk–Fk+
–


Fk+ + 

=
Fk–Fk+(Fk+ – Fk–) – Fk–Fk+

(Fk– + )Fk–Fk+(Fk+ + )

–
Fk– + Fk+ + 

(Fk– + )Fk–Fk+(Fk+ + )

=
Fk–Fk+ – (F

k+ – F
k–) – 

(Fk– + )Fk–Fk+(Fk+ + )

<
Fk–Fk+ – Fk–Fk+ – 

(Fk– + )Fk–Fk+(Fk+ + )

< –


(Fk– + )(Fk+ + )
,

from which we deduce that

mn∑
k=n


Fk–Fk+

>
mn∑
k=n

(


Fk– + 
–


Fk+ + 

)
+

mn∑
k=n


(Fk– + )(Fk+ + )

=


Fn– + 
–


Fmn+ + 

+
mn∑
k=n


(Fk– + )(Fk+ + )

>


Fn– + 
+


(Fn– + )(Fn+ + )

–


Fn+ + 

>


Fn– + 
, (.)

where the last inequality follows from Lemma ..
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Combining (.) and (.), we obtain


Fn– + 

<
mn∑
k=n


Fk–Fk+

<


Fn–
,

from which the desired result follows. �

Similarly, we can obtain the following result, whose proof is omitted here.

Theorem . For all n ≥  and m ≥ ,

⌊( mn∑
k=n


FkFk+

)–⌋
= Fn – .

3 Main results II: alternating reciprocal sums
In this section, we extend the analysis of the sums of the products of two reciprocal
Fibonacci numbers to alternating sums.

3.1 Alternating reciprocal sum of FkFk+1

Lemma . For n ≥ , we have

Fn+

Fn
–


Fn

=
Fn+ + (–)n – 

Fn
, (.)

Fn+

Fn
+


Fn

=
Fn+ + (–)n + 

Fn
. (.)

Proof Applying (.) repeatedly and (.), we derive that

Fn+

Fn
–


Fn

=
Fn+Fn – Fn

FnFn

=
Fn+(Fn–Fn + FnFn+) – Fn

FnFn

=
Fn+Fn– + F

n+ – 
Fn

=
(Fn+Fn– – F

n ) + (F
n + F

n+) – 
Fn

=
Fn+ + (–)n – 

Fn
.

Then (.) immediately follows from (.). �

Lemma . If n ≥ , then


Fn – 

–
Fn+

FnFn+
> , (.)


Fn + 

–
Fn+

FnFn+
< . (.)
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Proof It follows from (.) that


Fn – 

–
Fn+

FnFn+
=

FnFn+ – Fn+Fn + Fn+

(Fn – )FnFn+
=

(–)n+Fn + Fn+

(Fn – )FnFn+
> .

Similarly, we can prove (.). �

Lemma . For n ≥  and m ≥ , we have

Fn+

Fn
–

Fmn+

Fmn+
> , (.)

Fn+

Fn+
–

Fmn+

Fmn+
≤ . (.)

Proof With the help of (.), we see that

Fn+

Fn
–

Fmn+

Fmn+
=

Fn+Fmn+ – FnFmn+

FnFmn+
= (–)n+ F(m–)n+

FnFmn+
> .

A similar analysis yields (.). �

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n

(–)k

FkFk+

)–⌋
=

{
Fn –  if n is even;
–Fn –  if n is odd.

Proof Employing (.), we derive that

(–)k

FkFk+
=

F
k+ – FkFk+

FkFk+
=

Fk+

Fk
–

Fk+

Fk+
,

which implies that

mn∑
k=n

(–)k

FkFk+
=

Fn+

Fn
–

Fmn+

Fmn+
. (.)

Furthermore, it follows from (.) and (.) that

Fn+

Fn
–

Fmn+

Fmn+
≤ Fn+

Fn
–

Fn+

Fn+
=

Fn+Fn+ – FnFn+

FnFn+
= (–)n Fn+

FnFn+
. (.)

We first assume that n is even. Then combining (.) and (.), we obtain

Fn+

Fn
–

Fmn+

Fmn+
≤ Fn+

FnFn+
<


Fn – 

. (.)

On the other hand, it follows from (.) and (.) that

Fn+

Fn
–


Fn

–
Fmn+

Fmn+
> ,
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which means that

Fn+

Fn
–

Fmn+

Fmn+
>


Fn

. (.)

Now combining (.), (.), and (.), we deduce that


Fn

<
mn∑
k=n

(–)k

FkFk+
<


Fn – 

,

which shows that the statement is true when n is even.
We now consider the case where n is odd. It is clearly true for n = , so we assume that

n ≥ . Applying (.) and (.), we can see that

Fn+

Fn
–

Fmn+

Fmn+
≤ –

Fn+

FnFn+
< –


Fn + 

. (.)

It follows from (.) and (.) that

Fn+

Fn
+


Fn

–
Fmn+

Fmn+
=

Fn+

Fn
–

Fmn+

Fmn+
> ,

which means that

Fn+

Fn
–

Fmn+

Fmn+
> –


Fn

. (.)

Combining (.), (.), and (.), we get that

–


Fn
<

mn∑
k=n

(–)k

FkFk+
< –


Fn + 

,

which yields the desired identity. �

3.2 Alternating reciprocal sums of F2k–1F2k

For n ≥ , we define

f (n) =


Fn–Fn–
–

(–)n

Fn–Fn
–


FnFn+

,

g(n) =


Fn–Fn– + 
–

(–)n

Fn–Fn
–


FnFn+ + 

,

s(n) =
–

Fn–Fn– + 
–

(–)n

Fn–Fn
+


FnFn+ + 

,

t(n) =
–

Fn–Fn–
–

(–)n

Fn–Fn
+


FnFn+

.

It is not hard to check that f (n), g(n), s(n), and t(n) are all negative if n is even and positive
otherwise.
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Lemma . For n ≥ , we have

f (n) + f (n + ) > . (.)

Proof The statement is clearly true when n is odd, so we assume that n is even in the rest
of the proof. Applying (.), we derive that

f (n) + f (n + ) =


Fn–Fn–
–


Fn–Fn

+


Fn+Fn+
–


Fn+Fn+

=



(


Fn–Fn–
–


Fn+Fn+

)
–

(


Fn–Fn
–


Fn+Fn+

)

=



Fn+Fn+ – Fn–Fn–

Fn–Fn–Fn+Fn+
–

Fn+Fn+ – Fn–Fn

Fn–FnFn+Fn+

=



Fn+Fn+ – FnFn+ + FnFn+ – Fn–Fn–

Fn–Fn–Fn+Fn+

–
Fn+Fn+ – Fn–Fn

Fn–FnFn+Fn+

=



Fn+ + Fn–

Fn–Fn–Fn+Fn+
–

Fn+

Fn–FnFn+Fn+

=



Fn+

Fn–Fn–Fn+Fn+
–

Fn+

Fn–FnFn+Fn+

=
Fn+

Fn–Fn+

(


Fn–Fn+
–


FnFn+

)

=
Fn+

Fn–Fn+
· FnFn+ – Fn–Fn+

Fn–FnFn+Fn+

=
Fn+

Fn–Fn+
· 

Fn–FnFn+Fn+

> ,

where the last equality follows from (.). �

Remark From the proof of Lemma . we can easily derive that if n is odd, then

f (n) + f (n + ) =
Fn+

Fn–Fn+

(


Fn–Fn+
+


FnFn+

)

>
Fn+

Fn–Fn+
· 

Fn–FnFn+Fn+
.

Therefore, whether n is even or odd, we always have

f (n) + f (n + ) ≥ Fn+

Fn–Fn+
· 

Fn–FnFn+Fn+
>


Fn–FnFn+Fn+

. (.)

Lemma . If n ≥  and m ≥ , we have

f (n) + f (n + ) + f (mn) > .
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Proof If mn is odd, then the result follows from (.) and the fact f (mn) > . Now we
consider the case where mn is even. It is straightforward to check that

f (mn) =


Fmn–Fmn–
–


Fmn–Fmn

–


FmnFmn+

=
FmnFmn+ – Fmn–Fmn– – Fmn–Fmn+

Fmn–Fmn–FmnFmn+

=
Fmn(Fmn + Fmn–) – (Fmn – Fmn–)Fmn– – Fmn–Fmn+

Fmn–Fmn–FmnFmn+

=
F

mn + F
mn– – (Fmn – Fmn–)(Fmn + Fmn–)

Fmn–Fmn–FmnFmn+

=
F

mn– – F
mn

Fmn–Fmn–FmnFmn+
.

Invoking (.), we get

F
mn – F

mn– = (Fmn– + Fmn–) – F
mn–

= Fmn–Fmn– + F
mn– – F

mn–

= Fmn–Fmn– – Fmn–Fmn

= Fmn–Fmn– – (Fmn–Fmn – Fmn–Fmn–)

= Fmn–Fmn– – (–)mn–

= Fmn–Fmn– – .

Therefore, we have

f (mn) =
–(Fmn–Fmn– – )

Fmn–Fmn–FmnFmn+
>

–
FmnFmn+

. (.)

Combining (.) and (.), we obtain

f (n) + f (n + ) + f (mn) >


Fn–FnFn+Fn+
–


FmnFmn+

≥ 
FnFn+Fn–Fn+

–


FnFn+
.

Since Fn+ > Fn and

Fn = Fn–Fn + FnFn+ = Fn–Fn+ + Fn–Fn+,

we determine that

f (n) + f (n + ) + f (mn) > .

The proof is completed. �
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Lemma . If n ≥  is even, we have

g(n) + g(n + ) < .

Proof From the proof of Lemma . we know that

g(n) + g(n + ) =


Fn–Fn– + 
–


Fn–Fn

+


Fn+Fn+
–


Fn+Fn+ + 

=
(Fn+Fn+ – Fn–Fn–)

(Fn–Fn– + )(Fn+Fn+ + )
–

(


Fn–Fn
–


Fn+Fn+

)

=
Fn+

(Fn–Fn– + )(Fn+Fn+ + )
–

Fn+

Fn–FnFn+Fn+
.

For n ≥ , we have

(Fn–Fn– + )(Fn+Fn+ + )

> Fn–Fn–Fn+Fn+ + Fn+Fn+

= Fn–Fn+(Fn–Fn+ – FnFn+)

+ Fn+Fn+ + Fn–FnFn+Fn+

= Fn–FnFn+Fn+ + Fn+Fn+ – Fn–Fn+

= Fn–FnFn+Fn+ + Fn+(Fn+ – Fn–)

= Fn–FnFn+Fn+ + Fn+(Fn– – Fn–)

> Fn–FnFn+Fn+,

which implies

g(n) + g(n + ) < .

This completes the proof. �

Lemma . If n >  is even, then

g(n) +


FnFn+ + 
< .

Proof The result follows from the definition of g(n) and the fact Fn > Fn+. �

To introduce the property of s(n), we need two preliminary results.

Lemma . If n ≥ , then

FnFn+ > Fn–FnFn+Fn+.

Proof It is easy to see that Fn > Fn+ for n ≥ . We claim that Fn ≥ Fn+ if n ≥ . First,
the claim holds for n =  and n = . Now we assume that n ≥ . It is straightforward to
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verify that

Fn = Fn + Fn = Fn + Fn– + Fn– > Fn + Fn– + Fn– = Fn+.

Since Fn ≥ Fn+ and Fn+ > Fn+, we have Fn > Fn+ for n ≥ .
It follows from (.) that Fn = Fn–Fn + FnFn+ and

Fn+ = Fn–Fn+ + Fn–Fn+ = Fn–Fn+ + Fn–Fn+ + Fn–Fn+,

from which we derive that

FnFn+

Fn–FnFn+Fn+
=

Fn

FnFn+
· Fn+

Fn–Fn+

=
(

 +
Fn–

Fn+

)(
 +

Fn–

Fn–
+

Fn+

Fn+

)

=  +
Fn–

Fn–
+

Fn+

Fn+
+

Fn–

Fn+
+

Fn–

Fn+
+

Fn–

Fn+

=  +
Fn–

Fn–
+

Fn+

Fn+
+

Fn

Fn+
+

Fn–

Fn+

>  +



+



+



+



= ,

which completes the proof. �

Lemma . For n ≥ , we have

Fn+(Fn+ – Fn–) > (Fn–Fn– + )Fn+.

Proof It is easy to see that F
n–Fn+ > Fn+ for n ≥ , and thus we have

Fn+Fn– = (Fn–Fn+ + Fn–Fn+)Fn–

= F
n–Fn+ + Fn–Fn–Fn+

> Fn+ + Fn–Fn–Fn+

= (Fn–Fn– + )Fn+.

It is straightforward to check that Fn+ = Fn– + Fn–, from which we get

Fn+ – Fn– = Fn– – Fn– > Fn–.

Combining the last two inequalities yields the desired result. �

Lemma . If n ≥  is odd, then

s(n) + s(n + ) –


FnFn+ + 
> .
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Proof Since n is odd, we have

s(n) + s(n + ) =
–

Fn–Fn– + 
+


Fn–Fn

–


Fn+Fn+
+


Fn+Fn+ + 

=
(


Fn–Fn

–


Fn+Fn+

)
–

(


Fn–Fn– + 
–


Fn+Fn+ + 

)

=
Fn+

Fn–FnFn+Fn+
–

Fn+

(Fn–Fn– + )(Fn+Fn+ + )

>
Fn+

Fn–FnFn+Fn+
–

Fn+

(Fn–Fn– + )Fn+Fn+

=


Fn–FnFn+Fn+
· Fn+(Fn+ – Fn–)

(Fn–Fn– + )Fn+

>


Fn–FnFn+Fn+
· Fn+(Fn+ – Fn–)

(Fn–Fn– + )Fn+

>


Fn–FnFn+Fn+
,

where the last inequality follows from Lemma ..
Applying Lemma ., we have

FnFn+ +  > FnFn+ > Fn–FnFn+Fn+,

which implies that

s(n) + s(n + ) –


FnFn+ + 
> s(n) + s(n + ) –


Fn–FnFn+Fn+

>


Fn–FnFn+Fn+
–


Fn–FnFn+Fn+

> ,

which completes the proof. �

Applying a similar analysis of f (n), we can obtain the following properties of t(n), whose
proofs are omitted here.

Lemma . For n ≥ ,

t(n) + t(n + ) < .

Lemma . If n ≥  and m ≥ , we have

t(n) + t(n + ) + t(mn) < .

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n

(–)k

Fk–Fk

)–⌋
=

{
Fn–Fn– if n is even;
–Fn–Fn– –  if n is odd.
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Proof We first consider the case where n is even. With the help of f (n), we have

mn∑
k=n

(–)k

Fk–Fk
=


Fn–Fn–

–


FmnFmn+
–

mn∑
k=n

f (k).

Lemma . implies that

mn–∑
k=n+

f (k) > .

Furthermore, applying Lemma ., we get

mn∑
k=n

f (k) = f (n) + f (n + ) + f (mn) +
mn–∑
k=n+

f (k) > .

Hence, we obtain

mn∑
k=n

(–)k

Fk–Fk
<


Fn–Fn–

. (.)

It follows from Lemma . and Lemma . that

mn∑
k=n

(–)k

Fk–Fk
=


Fn–Fn– + 

–


FmnFmn+ + 
–

mn∑
k=n

g(k)

=


Fn–Fn– + 
–

mn–∑
k=n

g(k) –
(

g(mn) +


FmnFmn+ + 

)

>


Fn–Fn– + 
. (.)

Combining (.) and (.) yields


Fn–Fn– + 

<
mn∑
k=n

(–)k

Fk–Fk
<


Fn–Fn–

,

which shows that the statement is true when n is even.
Next, we turn to the case where n is odd. It follows from Lemma . that

mn∑
k=n

(–)k

Fk–Fk
=

–
Fn–Fn– + 

+


FmnFmn+ + 
–

mn∑
k=n

s(k)

=
–

Fn–Fn– + 
–

(
s(n) + s(n + ) –


FmnFmn+ + 

)
–

mn∑
k=n+

s(k)

<
–

Fn–Fn– + 
–

(
s(n) + s(n + ) –


FnFn+ + 

)
–

mn∑
k=n+

s(k)

<
–

Fn–Fn– + 
. (.)
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If mn is even, then it follows from Lemma . that
∑mn

k=n t(k) < , and hence

mn∑
k=n

(–)k

Fk–Fk
=

–
Fn–Fn–

+


FmnFmn+
–

mn∑
k=n

t(k)

>
–

Fn–Fn–
.

If mn is odd, then it follows from Lemma . that

mn∑
k=n

(–)k

Fk–Fk
=

–
Fn–Fn–

+


FmnFmn+
–

mn∑
k=n

t(k)

=
–

Fn–Fn–
+


FmnFmn+

–
mn–∑
k=n+

t(k)

–
(
t(n) + t(n + ) + t(mn)

)

>
–

Fn–Fn–
.

Therefore, if n is odd, then we always have

mn∑
k=n

(–)k

Fk–Fk
>

–
Fn–Fn–

. (.)

It follows from (.) and (.) that

–
Fn–Fn–

<
mn∑
k=n

(–)k

Fk–Fk
<

–
Fn–Fn– + 

,

which shows that the assertion for odd n also holds. �

Similarly, we can consider the alternating reciprocal sums of FkFk+ and obtain the
following result, whose proof is similar to that of Theorem . and is omitted here.

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n

(–)k

FkFk+

)–⌋
=

{
Fn–Fn –  if n is even;
–Fn–Fn, if n is odd.

3.3 Alternating sums of F2k–1F2k+1

We first introduce the following notation:

α(n) =


F
n–

–
(–)n

Fn–Fn+
–


F

n+
,

β(n) =


F
n– – 

–
(–)n

Fn–Fn+
–


F

n+ – 
,

γ (n) =
–

F
n– – 

–
(–)n

Fn–Fn+
+


F

n+ – 
,
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δ(n) =
–

F
n–

–
(–)n

Fn–Fn+
+


F

n+
.

It is not hard to check that α(n), β(n), γ (n), and δ(n) are all negative if n is even and positive
otherwise.

Lemma . If n >  is even, then

α(n) + α(n + ) < .

Proof Since n is even, we have

α(n) + α(n + ) =


F
n–

–


Fn–Fn+
+


Fn+Fn+

–


F
n+

=



(


F
n–

–


F
n+

)
–


Fn+

(


Fn–
–


Fn+

)

=



(


Fn–
–


Fn+

)(


Fn–
+


Fn+

–


Fn+

)

=



(


Fn–
–


Fn+

)(


Fn+
–

Fn–

Fn–Fn+

)

=



(


Fn–
–


Fn+

)(
Fn–Fn+ – Fn–Fn+

Fn–Fn+Fn+

)

= –
(


Fn–

–


Fn+

)


Fn–Fn+Fn+

< ,

where the last equality follows from (.). �

Lemma . For n > ,

Fn–Fn+ >
(
F

n– – 
)
F

n+.

Proof It is easy to see that the result holds when n < . Next we show that, for n ≥ ,

Fn–Fn+ > FnFn+ > F
n–F

n+,

from which the desired result follows.
The first inequality is obvious. It follows from (.) that

Fn = Fn–Fn+ + Fn–Fn+,

Fn+ = Fn–Fn+ + Fn–Fn+,

which implies that

FnFn+ = Fn–Fn–F
n+ + F

n–Fn+Fn+ + Fn–Fn–Fn+Fn+ + Fn–Fn–F
n+

= Fn–Fn–F
n+ +

(
Fn–Fn– – (–)n)Fn+Fn+ + Fn–Fn–Fn+Fn+
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+ Fn–Fn–F
n+

= Fn–Fn–F
n+ + Fn–Fn–Fn+Fn+ + Fn–Fn–F

n+ – (–)nFn+Fn+

> Fn–Fn–F
n+ + Fn–Fn–F

n+ + Fn–Fn–F
n+ – (–)nFn+Fn+

= F
n–F

n+ + Fn–Fn–F
n+ – (–)nFn+Fn+

> F
n–F

n+,

where the last inequality follows from the fact that, for n ≥ ,

Fn–Fn–Fn+ ≥ Fn+ > Fn+.

This completes the proof. �

Lemma . For n ≥ ,

β(n) + β(n + ) > .

Proof It is obviously true when n is odd, so we assume that n is even. Now we have

β(n) + β(n + ) =
(


F

n– – 
–


F

n+ – 

)
–

(


Fn–Fn+
–


Fn+Fn+

)

=
(F

n+ – F
n–)

(F
n– – )(F

n+ – )
–

Fn+ – Fn–

Fn–Fn+Fn+

=
Fn+(Fn+ – Fn–)

(F
n– – )(F

n+ – )
–

Fn+ – Fn–

Fn–Fn+Fn+
.

Since

(
F

n– – 
)(

F
n+ – 

)
= F

n–F
n+ – F

n– – F
n+ + 

= Fn–Fn+
(
F

n+ + 
)

– F
n– – F

n+ + 

= Fn–F
n+Fn+ + Fn–Fn+ – F

n– – F
n+ + 

< Fn–F
n+Fn+ + Fn–Fn+ – F

n+

= Fn–F
n+Fn+ + Fn+(Fn– – Fn+)

= Fn–F
n+Fn+ – Fn+(Fn– + Fn–)

< Fn–F
n+Fn+,

we have

β(n) + β(n + ) > ,

which completes the proof. �
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Remark From the proof of Lemma . we can derive that if n is odd, then

β(n) + β(n + ) =
(


F

n– – 
–


F

n+ – 

)
+

(


Fn–Fn+
–


Fn+Fn+

)

>
(


F

n– – 
–


F

n+ – 

)
–

(


Fn–Fn+
–


Fn+Fn+

)

=
Fn+(Fn+ – Fn–)

(F
n– – )(F

n+ – )
–

Fn+ – Fn–

Fn–Fn+Fn+

>
F

n+
(F

n– – )(F
n+ – )

–
Fn+

Fn–Fn+Fn+

=
F

n+
(F

n– – )(F
n+ – )

–


Fn–Fn+

>
F

n+
(F

n– – )F
n+

–


Fn–Fn+

=
Fn–(F

n+ – Fn–Fn+) + Fn+

(F
n– – )Fn–F

n+

=
Fn+ – Fn–

(F
n– – )Fn–F

n+

=
Fn + Fn–

(F
n– – )Fn–F

n+
.

Thus, we have that, for all n > ,

β(n) + β(n + ) >
Fn + Fn–

(F
n– – )Fn–F

n+
>


(F

n– – )F
n+

. (.)

Lemma . If n ≥  and m ≥ , we have

β(n) + β(n + ) + β(mn) > .

Proof If mn is odd, then the result follows from the facts β(mn) >  and β(n) +β(n + ) > .
Next, we focus ourselves on the case where mn is even. It is easy to see that

β(mn) =


F
mn– – 

–


Fmn–Fmn+
–


F

mn+ – 

=
F

mn+ – F
mn–

(F
mn– – )(F

mn+ – )
–


Fmn–Fmn+

>
F

mn+ – F
mn–

F
mn– · F

mn+
–


Fmn–Fmn+

=
F

mn+ – F
mn–

F
mn–F

mn+
–


Fmn–Fmn+

.

Furthermore, since

F
mn+ – F

mn– = Fmn+(Fmn– + Fmn–) – F
mn–

= Fmn–Fmn+ + Fmn–(Fmn– + Fmn) – F
mn–
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= Fmn–Fmn+ + Fmn–Fmn– +
(
Fmn–Fmn – F

mn–
)

= Fmn–Fmn+ + Fmn–Fmn– + (–)mn–

> Fmn–Fmn+,

we have

β(mn) >
Fmn–Fmn+

F
mn–F

mn+
–


Fmn–Fmn+

= –


Fmn–Fmn+
.

From (.) we see that

β(n) + β(n + ) + β(mn) >


(F
n– – )F

n+
–


Fmn–Fmn+

≥ 
(F

n– – )F
n+

–


Fn–Fn+

> ,

where the last inequality follows from Lemma .. �

Applying a similar analysis of β(n), we can obtain the following properties of γ (n), and
the details are left as an exercise.

Lemma . For n ≥ , we have

γ (n) + γ (n + ) < .

Lemma . If n ≥  and m ≥ , then

γ (n) + γ (n + ) + γ (mn) < .

Lemma . If n ≥  is odd, then we have

δ(n) + δ(n + ) –


F
n+

> .

Proof Since n is odd, we have

δ(n) + δ(n + ) = –


F
n–

+


Fn–Fn+
–


Fn+Fn+

+


F
n+

.

Applying the argument in the proof of Lemma ., we obtain

δ(n) + δ(n + ) =
Fn+ – Fn–

F
n–Fn+F

n+
>


F

n–F
n+

.

Since Fn+ = Fn–Fn+ + Fn–Fn+, we have Fn+ ≥ Fn–Fn+. Thus,

F
n+ > F

n–F
n+.

Combining the last two inequalities yields the desired result. �
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Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n

(–)k

Fk–Fk+

)–⌋
=

{
F

n– –  if n is even;
–F

n– if n is odd.

Proof We first consider the case where n is even. Now we have

α(mn) +


F
mn+

=


F
mn–

–


Fmn–Fmn+
< ,

where the inequality follows from the fact Fn– > Fn+.
Combining Lemma . and the last inequality, we derive that

mn∑
k=n

(–)k

Fk–Fk+
=


F

n–
–


F

mn+
–

mn∑
k=n

α(k)

=


F
n–

–
mn–∑
k=n

α(k) –
(

α(mn) +


F
mn+

)

>


F
n–

.

With the help of β(n), Lemma ., and Lemma ., we get

mn∑
k=n

(–)k

Fk–Fk+
=


F

n– – 
–


F

mn+ – 
–

mn∑
k=n

β(k)

<


F
n– – 

–
(
β(n) + β(n + ) + β(mn)

)
–

mn–∑
k=n+

β(k)

<


F
n– – 

.

Therefore, we arrive at


F

n–
<

mn∑
k=n

(–)k

Fk–Fk+
<


F

n– – 
,

which shows that the statement is true when n is even.
We now turn to the case where n is odd. We have

mn∑
k=n

(–)k

Fk–Fk+
=

–
F

n– – 
+


F

mn+ – 
–

mn∑
k=n

γ (k).

If mn is even, we easily see that

mn∑
k=n

γ (k) < 
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by Lemma .. Therefore,

mn∑
k=n

(–)k

Fk–Fk+
>

–
F

n– – 
.

If mn is odd, then employing Lemma . and Lemma ., we deduce

mn∑
k=n

(–)k

Fk–Fk+
=

–
F

n– – 
+


F

mn+ – 
–

mn–∑
k=n+

γ (k)

–
(
γ (n) + γ (n + ) + γ (mn)

)

>
–

F
n– – 

.

Thus, we always have

mn∑
k=n

(–)k

Fk–Fk+
>

–
F

n– – 
,

provided that n is odd.
Since n is odd, it follows from Lemma . that

mn∑
k=n+

δ(k) > .

Furthermore, applying the last inequality and Lemma ., we derive that

mn∑
k=n

(–)k

Fk–Fk+
=

–
F

n–
+


F

mn+
–

mn∑
k=n

δ(k)

=
–

F
n–

–
mn∑

k=n+

δ(k) –
(

δ(n) + δ(n + ) –


F
mn+

)

<
–

F
n–

–
(

δ(n) + δ(n + ) –


F
n+

)

<
–

F
n–

.

Therefore, when n is odd, we have

–
F

n– – 
<

mn∑
k=n

(–)k

Fk–Fk+
<

–
F

n–
,

which yields the desired identity. �

Similarly, we can prove the following result, whose proof is omitted here.

Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n

(–)k

FkFk+

)–⌋
=

{
F

n if n is even;
–F

n –  if n is odd.
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4 Conclusions
In this paper, we investigate the sums and alternating sums of the products of two recipro-
cal Fibonacci numbers in various ways. The results are new and interesting. In particular,
the techniques for dealing with alternating sums can be applied to study other types of
alternating sums, which will be presented in a future paper.
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