225 research outputs found

    Universal state inversion and concurrence in arbitrary dimensions

    Get PDF
    Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a "universal inverter," which acts on quantum systems of arbitrary dimension, and we introduce the corresponding concurrence for joint pure states of (D1 X D2) bipartite quantum systems. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT superoperator.Comment: Revtex, 25 page

    Svetlichny's inequality and genuine tripartite nonlocality in three-qubit pure states

    Full text link
    The violation of the Svetlichny's inequality (SI) [Phys. Rev. D, 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the GHZ-class and the W-class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large number of states don't violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the the W-class states, and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their certain sum attains a certain threshold value, they violate the inequality.Comment: Modified version, 5 pages, 2 figures, REVTeX

    Entanglement Detection Using Majorization Uncertainty Bounds

    Full text link
    Entanglement detection criteria are developed within the framework of the majorization formulation of uncertainty. The primary results are two theorems asserting linear and nonlinear separability criteria based on majorization relations, the violation of which would imply entanglement. Corollaries to these theorems yield infinite sets of scalar entanglement detection criteria based on quasi-entropic measures of disorder. Examples are analyzed to probe the efficacy of the derived criteria in detecting the entanglement of bipartite Werner states. Characteristics of the majorization relation as a comparator of disorder uniquely suited to information-theoretical applications are emphasized throughout.Comment: 10 pages, 1 figur

    From raw data to agent perceptions for simulation, verification, and monitoring

    Get PDF
    In this paper we present a practical solution to the problem of connecting “real world” data exchanged between sensors and actuators with the higher level of abstraction used in frameworks for multiagent systems. In particular, we show how to connect an industry-standard publish-subscribe communication protocol for embedded systems called MQTT with two Belief-Desire-Intention agent modelling and programming languages: Jason/AgentSpeak and Brahms. In the paper we describe the details of our Java implementation and we release all the code open source

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure

    Forgotten Knowledge: Examining the Citational Amnesia in NLP

    Full text link
    Citing papers is the primary method through which modern scientific writing discusses and builds on past work. Collectively, citing a diverse set of papers (in time and area of study) is an indicator of how widely the community is reading. Yet, there is little work looking at broad temporal patterns of citation. This work systematically and empirically examines: How far back in time do we tend to go to cite papers? How has that changed over time, and what factors correlate with this citational attention/amnesia? We chose NLP as our domain of interest and analyzed approximately 71.5K papers to show and quantify several key trends in citation. Notably, around 62% of cited papers are from the immediate five years prior to publication, whereas only about 17% are more than ten years old. Furthermore, we show that the median age and age diversity of cited papers were steadily increasing from 1990 to 2014, but since then, the trend has reversed, and current NLP papers have an all-time low temporal citation diversity. Finally, we show that unlike the 1990s, the highly cited papers in the last decade were also papers with the least citation diversity, likely contributing to the intense (and arguably harmful) recency focus. Code, data, and a demo are available on the project homepage.Comment: ACL 2023 Main Conferenc

    Optimal Lewenstein-Sanpera Decomposition for some Biparatite Systems

    Full text link
    It is shown that for a given bipartite density matrix and by choosing a suitable separable set (instead of product set) on the separable-entangled boundary, optimal Lewenstein-Sanpera (L-S) decomposition can be obtained via optimization for a generic entangled density matrix. Based on this, We obtain optimal L-S decomposition for some bipartite systems such as 222\otimes 2 and 232\otimes 3 Bell decomposable states, generic two qubit state in Wootters basis, iso-concurrence decomposable states, states obtained from BD states via one parameter and three parameters local operations and classical communications (LOCC), ddd\otimes d Werner and isotropic states, and a one parameter 333\otimes 3 state. We also obtain the optimal decomposition for multi partite isotropic state. It is shown that in all 222\otimes 2 systems considered here the average concurrence of the decomposition is equal to the concurrence. We also show that for some 232\otimes 3 Bell decomposable states the average concurrence of the decomposition is equal to the lower bound of the concurrence of state presented recently in [Buchleitner et al, quant-ph/0302144], so an exact expression for concurrence of these states is obtained. It is also shown that for ddd\otimes d isotropic state where decomposition leads to a separable and an entangled pure state, the average I-concurrence of the decomposition is equal to the I-concurrence of the state. Keywords: Quantum entanglement, Optimal Lewenstein-Sanpera decomposition, Concurrence, Bell decomposable states, LOCC} PACS Index: 03.65.UdComment: 31 pages, Late
    corecore