6 research outputs found

    Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study.

    No full text
    Influenza is an infectious respiratory illness caused by influenza viruses. Despite yearly updates, the efficacy of influenza vaccines is significantly curtailed by the virus antigenic drift and antigenic shift. These constant changes to the influenza virus make-up also challenge the development of a universal flu vaccine, which requires conserved antigenic regions shared by influenza viruses of different subtypes. We propose that it is possible to bypass these challenges by the development of an influenza vaccine based on conserved proteins delivered in an adjuvanted nanoparticle system. In this study, we generated influenza nanoparticle constructs using trimethyl chitosan nanoparticles (TMC nPs) as the carrier of recombinant influenza hemagglutinin subunit 2 (HA2) and nucleoprotein (NP). The purified HA2 and NP recombinant proteins were encapsulated into TMC nPs to form HA2-TMC nPs and NP-TMC nPs, respectively. Primary human intranasal epithelium cells (HNEpCs) were used as an in vitro model to measure immunity responses. HA2-TMC nPs, NP-TMC nPs, and HA2-NP-TMC nPs (influenza nanoparticle constructs) showed no toxicity in HNEpCs. The loading efficiency of HA2 and NP into the TMC nPs was 97.9% and 98.5%, respectively. HA2-TMC nPs and NP-TMC nPs more efficiently delivered HA2 and NP proteins to HNEpCs than soluble HA2 and NP proteins alone. The induction of various cytokines and chemokines was more evident in influenza nanoparticle construct-treated HNEpCs than in soluble protein-treated HNEpCs. In addition, soluble factors secreted by influenza nanoparticle construct-treated HNEpCs significantly induced MoDCs maturation markers (CD80, CD83, CD86 and HLA-DR), as compared to soluble factors secreted by protein-treated HNEpCs. HNEpCs treated with the influenza nanoparticle constructs significantly reduced influenza virus replication in an in vitro challenge assay. The results indicate that TMC nPs can be used as influenza vaccine adjuvants and carriers capable of delivering HA2 and NP proteins to HNEpCs

    Relationship of preexisting influenza hemagglutination inhibition, complement-dependent lytic, and antibody-dependent cellular cytotoxicity antibodies to the development of clinical illness in a prospective study of A(H1N1)pdm09 Influenza in children

    No full text
    The hemagglutination inhibition (HAI) antibody titer is considered the primary immune correlate of protection for influenza. However, recent studies have highlighted the limitations on the use of the HAI titer as a correlate in at-risk populations such as children and older adults. In addition to the neutralization of cell-free virus by antibodies to hemagglutinin and interference of virus release from infected cells by antibodies to neuraminidase, influenza virus-specific antibodies specifically can bind to infected cells and lyse virus-infected cells through the activation of complement or natural killer (NK) cells, via antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent lysis (CDL). We evaluated preexisting HAI, CDL, and ADCC antibodies in young children enrolled in a prospective cohort study of dengue during the epidemic with influenza A(H1N1)pdm09 virus to determine associations between preexisting antibodies and the occurrence of clinical or subclinical influenza virus infection. Though both preexisting HAI and CDL antibodies were associated with protection against clinical influenza, our data suggested that CDL was not a better correlate than HAI. We found that ADCC antibodies behaved differently from HAI and CDL antibodies. Unlike HAI and CDL antibodies, preexisting ADCC antibodies did not correlate with protection against clinical influenza. In fact, ADCC antibodies were detected more frequently in the clinical influenza group than the subclinical group. In addition, in contrast to HAI and CDL antibodies, HAI and the ADCC antibodies titers did not correlate. We also found that ADCC, but not CDL or HAI antibodies, positively correlated with the ages of the children
    corecore