16 research outputs found

    Medicarpin induces G1 arrest and mitochondria-mediated intrinsic apoptotic pathway in bladder cancer cells

    Get PDF
    Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study revealed that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy

    RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer

    No full text
    Abstract Necroptosis is a caspase-independent form of programmed cell death. Receptor interacting protein kinase 1 (RIPK1) is a key molecule in the initiation of necroptosis and the formation of the necrotic complex. Vasculogenic mimicry (VM) provides a blood supply to tumor cells that is not dependent on endothelial cells. However, the relationship between necroptosis and VM in triple-negative breast cancer (TNBC) is not fully understood. In this study, we found that RIPK1-dependent necroptosis promoted VM formation in TNBC. Knockdown of RIPK1 significantly suppressed the number of necroptotic cells and VM formation. Moreover, RIPK1 activated the p-AKT/eIF4E signaling pathway during necroptosis in TNBC. eIF4E was blocked by knockdown of RIPK1 or AKT inhibitors. Furthermore, we found that eIF4E promoted VM formation by promoting epithelial-mesenchymal transition (EMT) and the expression and activity of MMP2. In addition to its critical role in necroptosis-mediated VM, eIF4E was essential for VM formation. Knockdown of eIF4E significantly suppressed VM formation during necroptosis. Finally, through clinical significance, the results found that eIF4E expression in TNBC was positively correlated with the mesenchymal marker vimentin, the VM marker MMP2, and the necroptosis markers MLKL and AKT. In conclusion, RIPK1-dependent necroptosis promotes VM formation in TNBC. Necroptosis promotes VM formation by activating RIPK1/p-AKT/eIF4E signaling in TNBC. eIF4E promotes EMT and MMP2 expression and activity, leading to VM formation. Our study provides a rationale for necroptosis-mediated VM and also providing a potential therapeutic target for TNBC

    Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    No full text
    To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC), immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD), vasculogenic mimicry (VM), and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies

    ENO1 expression and Erk phosphorylation in PDAC and their effects on tumor cell apoptosis in a hypoxic microenvironment

    No full text
    Objective: Hypoxia is an important feature of pancreatic ductal adenocarcinoma (PDAC). Previously, we found that hypoxia promotes ENO1 expression and PDAC invasion. However, the underlying molecular mechanism was remains unclear. Methods: The relationship between ENO1 expression and clinicopathological characteristics was analyzed in 84 patients with PADC. The effects of CoCl2-induced hypoxia and ENO1 downregulation on the apoptosis, invasion, and proliferation of PDAC cells were evaluated in vitro and in vivo. Hypoxia- and ENO1-induced gene expression was analyzed by transcriptomic sequencing. Results: The prognosis of PDAC with high ENO1 expression was poor (P < 0.05). High ENO1 expression was closely associated with histological differentiation and tumor invasion in 84 PDAC cases (P < 0.05). Hypoxia increased ENO1 expression in PDAC and promoted its migration and invasion. Apoptotic cells and the apoptosis marker caspase-3 in the CoCl2-treated ENO1-sh group were significantly elevated (P < 0.05). Transcriptomic sequencing indicated that CoCl2-induced PDAC cells initiated MAPK signaling. Under hypoxic conditions, PDAC cells upregulated ENO1 expression, thereby accelerating ERK phosphorylation and inhibiting apoptosis (P < 0.05). Consistent results were also observed in a PDAC-bearing mouse hindlimb ischemia model. Conclusions: Hypoxia-induced ENO1 expression promotes ERK phosphorylation and inhibits apoptosis, thus leading to PDAC survival and invasion. These results suggest that ENO1 is a potential therapeutic target for PDAC

    Medicarpin induces G1 arrest and mitochondria-mediated intrinsic apoptotic pathway in bladder cancer cells

    No full text
    Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study reve aled that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy

    Functional annotation clustering of microarray data of H2170 cells stably transfected with EMX2 or empty vector control.

    No full text
    <p>Genes that exhibited more than 2-fold expression changes were analyzed with the Functional Annotation Clustering Tool of DAVID Bioinformatics Database by comparing with the Gene Ontology (GO) database and the KEGG_Pathway database. (a) Summary of functional annotation clusters. The higher the Enrichment scores, the more enriched. (b) Summary of enriched terms. Representative terms were selected among those that are similar. % is the percentage of involved gene / total gene numbers of a particular term. EASE score is a modified Fisher Exact <i>p</i>-value. Usually a <i>p</i>-value is equal or smaller than 0.05 to be considered strongly enriched in the annotation categories. (c) The migration annotation cluster. Every column represented a gene term, and the four terms were 1-GO:0016477-cell migration, 2- GO:0051674-localization of cell, 3-GO:0048870-cell motility, 4-GO:0006928-cell motion. (d) The Wnt pathway annotation cluster. Every column represented a gene term, and the six terms were 1-GO:0042813-Wnt receptor activity, 2-hsa04916-Melanogenesis, 3-hsa05217-Basal cell carcinoma, 4-GO:0016055-Wnt receptor signaling pathway, 5-hsa05210-Colorectal cancer, 6-hsa04310-Wnt signaling pathway. The green squares represent corresponding gene-term association positively reported, and the black squares represent corresponding gene-term association not reported yet.</p
    corecore