132 research outputs found

    The human amylase-encoding genes amy2 and amy3 are identical to AMY2A and AMY2B

    Full text link
    Inspetion of the published nucleotide sequences reveals that the human amylase-encoding genes, amy2 and amy3, must be identical to the genes AMY2A and AMY2B, respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27629/1/0000005.pd

    High levels of dietary stearate promote adiposity and deteriorate hepatic insulin sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively little is known about the role of specific saturated fatty acids in the development of high fat diet induced obesity and insulin resistance. Here, we have studied the effect of stearate in high fat diets (45% energy as fat) on whole body energy metabolism and tissue specific insulin sensitivity.</p> <p>Methods</p> <p>C57Bl/6 mice were fed a low stearate diet based on palm oil or one of two stearate rich diets, one diet based on lard and one diet based on palm oil supplemented with tristearin (to the stearate level of the lard based diet), for a period of 5 weeks. <it>Ad libitum </it>fed Oxidative metabolism was assessed by indirect calorimetry at week 5. Changes in body mass and composition was assessed by DEXA scan analysis. Tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analysis and Western blot at the end of week 5.</p> <p>Results</p> <p>Indirect calorimetry analysis revealed that high levels of dietary stearate resulted in lower caloric energy expenditure characterized by lower oxidation of fatty acids. In agreement with this metabolic phenotype, mice on the stearate rich diets gained more adipose tissue mass. Whole body and tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp and analysis of insulin induced PKB<sup>ser473 </sup>phosphorylation. Whole body insulin sensitivity was decreased by all high fat diets. However, while insulin-stimulated glucose uptake by peripheral tissues was impaired by all high fat diets, hepatic insulin sensitivity was affected only by the stearate rich diets. This tissue-specific pattern of reduced insulin sensitivity was confirmed by similar impairment in insulin-induced phosphorylation of PKB<sup>ser473 </sup>in both liver and skeletal muscle.</p> <p>Conclusion</p> <p>In C57Bl/6 mice, 5 weeks of a high fat diet rich in stearate induces a metabolic state favoring low oxidative metabolism, increased adiposity and whole body insulin resistance characterized by severe hepatic insulin resistance. These results indicate that dietary fatty acid composition <it>per sé </it>rather than dietary fat content determines insulin sensitivity in liver of high fat fed C57Bl/6 mice.</p

    Purkinje cell-specific ablation of CaV2.1 Channels is sufficient to cause cerebellar ataxia in mice

    Get PDF
    The Cacna1a gene encodes the α1A subunit of voltage-gated CaV2.1 Ca2+ channels that are involved in neurotransmission at central synapses. CaV2.1-α1- knockout (α1KO) mice, which lack CaV2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of CaV2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the CaV2.1- α1A subunit and thereby CaV2.1 channels in Purkinje cells. Purkinje cell CaV2.1-α1A-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of CaV2.1 channels, we show that ablation of CaV2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of CaV2.1 channels may help in unraveling mechanisms of human disease

    Familial hemiplegic migraine locus on 19p13 is involved in the common forms of migraine with and without aura

    Get PDF
    Migraine is a common neurological disease of two main types: migraine with aura and migraine without aura. Familial clustering suggests that genetic factors are involved in the etiology of migraine. Recently, a gene for familial hemiplegic migraine, a rare autosomal dominant subtype of migraine with aura, was mapped to chromosome 19p13. We tested the involvement of this chromosomal region in 28 unrelated families with the common forms of migraine with and without aura, by following the transmission of the highly informative marker D19S394. Sibpair analysis showed that affected sibs shared the same marker allele more frequently than expected by chance. Our findings thus also suggest the involvement of a gene on 19p13 in the etiology of the common forms of migraine

    Benign familial infantile convulsions: A clinical study of seven Dutch families

    Get PDF
    Benign familial infantile convulsions (BFIC) is a recently identified partial epilepsy syndrome with onset between 3 and 12 months of age. We describe the clinical characteristics and outcome of 43 patients with BFIC from six Dutch families and one Dutch-Canadian family and the encountered difficulties in classifying the syndrome. Four families had a pure BFIC phenotype; in two families BFIC was accompanied by paroxysmal kinesigenic dyskinesias; in one family BFIC was associated with later onset focal epilepsy in older generations. Onset of seizures was between 6 weeks and 10 months, and seizures remitted before the age of 3 years in all patients with BFIC. In all, 29 (67%) of the 43 patients had been treated with anti-epileptic drugs for a certain period of time. BFIC is often not recognized as (hereditary) epilepsy by the treating physician. Seizures often remit shortly after the start of anti-epileptic drugs but, because of the benign course of the syndrome and the spontaneous remission of seizures, patients with low seizure fr

    Complete Loss of P/Q Calcium Channel Activity Caused by a CACNA1A Missense Mutation Carried by Patients with Episodic Ataxia Type 2

    Get PDF
    Familial hemiplegic migraine, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 are allelic disorders of the CACNA1A gene (coding for the α1A subunit of P/Q calcium channels), usually associated with different types of mutations (missense, protein truncating, and expansion, respectively). However, the finding of expansion and missense mutations in patients with EA2 has blurred this genotype-phenotype correlation. We report the first functional analysis of a new missense mutation, associated with an EA2 phenotype—that is, T→C transition of nt 4747 in exon 28, predicted to change a highly conserved phenylalanine residue to a serine at codon 1491, located in the putative transmembrane segment S6 of domain III. Patch-clamp recording in HEK 293 cells, coexpressing the mutagenized human α1A-2 subunit, together with human ÎČ4 and α2ÎŽ subunits, showed that channel activity was completely abolished, although the mutated protein is expressed in the cell. These results indicate that a complete loss of P/Q channel function is the mechanism underlying EA2, whether due to truncating or to missense mutations

    Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4

    Get PDF
    Genes for familial hemiplegic migraine (FHM) and episodic ataxia type-2 (EA-2) have been mapped to chromosome 19p13. We characterized a brain- specific P/Q-type Ca2+ channel α1-subunit gene, CACNLIA4, covering 300 kb with 47 exons. Sequencing of all exons and their surroundings revealed polymorphic variations, including a (CA)(n)-repeat (D19S1150), a (CAG)(n)- repeat in the 3'-UTR, and different types of deleterious mutations in FHM and EA-2. In FHM, we found four different missense mutations in conserved functional domains. One mutation has occurred on two different haplotypes in unrelated FHM families. In EA-2, we found two mutations disrupting the reading frame. Thus, FHM and EA-2 can be considered as allelic channelopathies. A similar etiology may be involved in common types of migraine

    A powerful and rapid approach to human genome scanning using small quantities of genomic DNA

    Get PDF
    Summary Dense maps of short-tandem-repeat polymorphisms (STRPs) have allowed genome-wide searches for genes involved in a great variety of diseases with genetic influences, including common complex diseases. Generally for this purpose, marker sets with a 10 cM spacing are genotyped in hundreds of individuals. We have performed power simulations to estimate the maximum possible intermarker distance that still allows for sufficient power. In this paper we further report on modifications of previously published protocols, resulting in a powerful screening set containing 229 STRPs with an average spacing of 18n3 cM. A complete genome scan using our protocol requires only 80 multiplex PCR reactions which are all carried out using one set of conditions and which do not contain overlapping marker allele sizes. The multiplex PCR reactions are grouped by sets of chromosomes, which enables on-line statistical analysis of a set of chromosomes, as sets of chromosomes are being genotyped. A genome scan following this modified protocol can be performed using a maximum amount of 2n5 ”g of genomic DNA per individual, isolated from either blood or from mouth swabs
    • 

    corecore