12 research outputs found

    Air Flow Measurements During Medium-Voltage Load Current Interruptions

    Get PDF
    Air has been considered a good alternative to SF6 as arc quenching medium for load break switchgear at medium voltage ratings. In this work, the air flow characteristics and influence from the electric arc have been studied for typical currents and over-pressures. The cooling air velocity is typically in the range 150 - 200 m/s and thus well below supersonic speed. The arc and the surrounding hot air severely affect the air flow pattern by causing clogging in the contact and nozzle region

    Air Flow Measurements During Medium-Voltage Load Current Interruptions

    Get PDF
    Air has been considered a good alternative to SF6 as arc quenching medium for load break switchgear at medium voltage ratings. In this work, the air flow characteristics and influence from the electric arc have been studied for typical currents and over-pressures. The cooling air velocity is typically in the range 150 - 200 m/s and thus well below supersonic speed. The arc and the surrounding hot air severely affect the air flow pattern by causing clogging in the contact and nozzle region

    On the Parameterized Complexity of Learning Monadic Second-Order Formulas

    Full text link
    Within the model-theoretic framework for supervised learning introduced by Grohe and Tur\'an (TOCS 2004), we study the parameterized complexity of learning concepts definable in monadic second-order logic (MSO). We show that the problem of learning a consistent MSO-formula is fixed-parameter tractable on structures of bounded tree-width and on graphs of bounded clique-width in the 1-dimensional case, that is, if the instances are single vertices (and not tuples of vertices). This generalizes previous results on strings and on trees. Moreover, in the agnostic PAC-learning setting, we show that the result also holds in higher dimensions. Finally, via a reduction to the MSO-model-checking problem, we show that learning a consistent MSO-formula is para-NP-hard on general structures

    The Complexity of Homomorphism Reconstructibility

    Full text link
    Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph GG as a finite vector of homomorphism counts from some fixed finite set of graphs to GG. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph GG that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an \mathsf{NP}^{#\mathsf{P}}-hard problem, which still can be NP\mathsf{NP}-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph GG as additional input, the problem cannot be NP\mathsf{NP}-hard unless P=NP\mathsf{P} = \mathsf{NP}. For this regime, we obtain partial positive results. We also investigate the problem's parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given

    Arc extinction with nitrogen at 1-40 bar in a puffer-like contact configuration

    Get PDF
    To develop cost-efficient subsea switchgear for large sea depths, the extinction of arcs under high filling pressures must be understood. In this work, arc-extinction experiments have been performed with a puffer-like contact configuration using nitrogen at different filling pressures as the current interruption medium. The main finding is that, for the given contact configuration, the currentinterruption capability was lower at 20 and 40 barabs than at 1 and 10 barabs. While higher pressures result in higher cooling flow rates and longer flow times given the same puffer volume, compression spring and nozzle geometry; it does not necessarily improve the arc-extinction capability. This is probably because higher filling pressures increase the arc voltage and total energy dissipated in the arcing zone. Because the filling pressure greatly influences the flow characteristics, the puffer design should be optimized for each pressure level

    Contact and nozzle wear from 100 interruptions for a puffer-type air load break switch

    Get PDF
    One type test requirement for medium voltage load break switches is to interrupt 100 consecutive "mainly active loads". A puffer-type switch with axial-blown arc has been tested according to the 630 A/24 kV ratings. The nozzle and contact wear were measured regularly to investigate design requirements and the impact from nozzle wear on gas flow. The contact wear is only moderate, while the nozzle wear causes a decrease in pressure build-up, which in turn may influence the interruption performance.publishedVersio

    Comparison of Different Air Flow Concepts for a Medium Voltage Load Break Switch

    Get PDF
    The research and development work towards a compact SF6-free load break switch for the medium voltage range has led to several design proposals. The interruption capability of three different nozzle and gas flow concepts with atmospheric air as the interrupting medium is compared and assessed. The three test switches are installed in circuits corresponding to the mainly active load and switch-fuse test duties of the 24 kV / 630 A load break switch standard. A pressure tank is used to provide different air flow rates, and the interruption capabilities of the different flow concepts are compared with basis in the tank pressure required to give successful interruptions. 270 current interruption tests were carried out. Air flows directed radially onto the arc or swirling along the arc turn out to result in a substantially better interruption performance than when the air flows straight and parallel to the arc. Air flows corresponding to upstream over-pressures of a few tenths of a bar seem to be sufficient for an air-based load break switch rated for 24 kV / 630 A.Comparison of Different Air Flow Concepts for a Medium Voltage Load Break SwitchacceptedVersio

    Arc extinction with nitrogen at 1-40 bar in a puffer-like contact configuration

    Get PDF
    To develop cost-efficient subsea switchgear for large sea depths, the extinction of arcs under high filling pressures must be understood. In this work, arc-extinction experiments have been performed with a puffer-like contact configuration using nitrogen at different filling pressures as the current interruption medium. The main finding is that, for the given contact configuration, the current interruption capability was lower at 20 and 40 barabs than at 1 and 10 barabs. While higher pressures result in higher cooling flow rates and longer flow times given the same puffer volume, compression spring and nozzle geometry; it does not necessarily improve the arc-extinction capability. This is probably because higher filling pressures increase the arc voltage and total energy dissipated in the arcing zone. Because the filling pressure greatly influences the flow characteristics, the puffer design should be optimized for each pressure level. Keywords: Current interruption, subsea switchgear, medium voltage, high-pressure nitrogenpublishedVersio

    Comparison of Different Air Flow Concepts for a Medium Voltage Load Break Switch

    Get PDF
    The research and development work towards a compact SF6-free load break switch for the medium voltage range has led to several design proposals. The interruption capability of three different nozzle and gas flow concepts with atmospheric air as the interrupting medium is compared and assessed. The three test switches are installed in circuits corresponding to the mainly active load and switch-fuse test duties of the 24 kV / 630 A load break switch standard. A pressure tank is used to provide different air flow rates, and the interruption capabilities of the different flow concepts are compared with basis in the tank pressure required to give successful interruptions. 270 current interruption tests were carried out. Air flows directed radially onto the arc or swirling along the arc turn out to result in a substantially better interruption performance than when the air flows straight and parallel to the arc. Air flows corresponding to upstream over-pressures of a few tenths of a bar seem to be sufficient for an air-based load break switch rated for 24 kV / 630 A

    Arc extinction with nitrogen at 1-40 bar in a puffer-like contact configuration

    Get PDF
    To develop cost-efficient subsea switchgear for large sea depths, the extinction of arcs under high filling pressures must be understood. In this work, arc-extinction experiments have been performed with a puffer-like contact configuration using nitrogen at different filling pressures as the current interruption medium. The main finding is that, for the given contact configuration, the current interruption capability was lower at 20 and 40 barabs than at 1 and 10 barabs. While higher pressures result in higher cooling flow rates and longer flow times given the same puffer volume, compression spring and nozzle geometry; it does not necessarily improve the arc-extinction capability. This is probably because higher filling pressures increase the arc voltage and total energy dissipated in the arcing zone. Because the filling pressure greatly influences the flow characteristics, the puffer design should be optimized for each pressure level. Keywords: Current interruption, subsea switchgear, medium voltage, high-pressure nitrogenpublishedVersio
    corecore