16 research outputs found

    Thermospheric heating at high latitudes as observed from intercosmos-Bulgaria-1300 and dynamics explorer-B

    Full text link
    This paper reports the results of the first direct comparison of near simultaneous measurements obtained by the INTERCOSMOS-BULGARIA-1300 and the DYNAMICS EXPLORER-B satellites. The ICB-1300 is in a near circular orbit at a mean height of about 850 km. The DE-B satellite in an elliptical orbit is sometimes directly below the ICB-1300 satellite providing an opportunity to investigate the response of the thermosphere to particle fluxes from the magnetosphere. Energy fluxes in the range 0.2-15 keV are obtained from an energetic particle analyzer on board the ICB-1300 satellite. The thermospheric composition and density are obtained by a neutral gas mass spectrometer (NACS) on the DE-B satellite. During the period 20 August-20 November, 1981, observations show tht the times and locations of maxima in magnetospheric energy deposition coincide with regions of maximum thermospheric upwelling characterized by composition changes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25883/1/0000446.pd

    Assessing the distribution of volatile organic compounds using land use regression in Sarnia, "Chemical Valley", Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Land use regression (LUR) modelling is proposed as a promising approach to meet some of the challenges of assessing the intra-urban spatial variability of ambient air pollutants in urban and industrial settings. However, most of the LUR models to date have focused on nitrogen oxides and particulate matter. This study aimed at developing LUR models to predict BTEX (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) concentrations in Sarnia, 'Chemical Valley', Ontario, and model the intra-urban variability of BTEX compounds in the city for a community health study.</p> <p>Method</p> <p>Using Organic Vapour Monitors, pollutants were monitored at 39 locations across the city of Sarnia for 2 weeks in October 2005. LUR models were developed to generate predictor variables that best estimate BTEX concentrations.</p> <p>Results</p> <p>Industrial area, dwelling counts, and highways adequately explained most of the variability of BTEX concentrations (<it>R</it><sup>2</sup>: 0.78 – 0.81). Correlations between measured BTEX compounds were high (> 0.75). Although most of the predictor variables (e.g. land use) were similar in all the models, their individual contributions to the models were different.</p> <p>Conclusion</p> <p>Yielding potentially different health effects than nitrogen oxides and particulate matter, modelling other air pollutants is essential for a better understanding of the link between air pollution and health. The LUR models developed in these analyses will be used for estimating outdoor exposure to BTEX for a larger community health study aimed at examining the determinants of health in Sarnia.</p

    A growing role for gender analysis in air pollution epidemiology

    Full text link

    Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    Get PDF
    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard

    Formaldehyde exposure and asthma in children: a systematic review Exposição ao formol e asma em crianças: uma revisão sistemática

    No full text
    Despite multiple published studies regarding the association between formaldehyde exposure and childhood asthma, a consistent association has not been identified. Here we report the results of a systematic review of published literature in order to provide a more comprehensive picture of this relationship. After a literature search, we identified seven studies providing quantitative results regarding the association between formaldehyde exposure and asthma in children. Studies were heterogeneous with respect to the definition of asthma. For each study, an odds ratio (OR) and 95% confidence interval (CI) for asthma were abstracted from published results or calculated based on the data provided. We used fixed- and random-effects models to calculate pooled ORs and 95% CIs; measures of heterogeneity were also calculated. A fixed-effects model produced an OR of 1.03 (95% CI, 1.021.04), and random effects model produced an OR of 1.17 (95% CI, 1.011.36), both reflecting an increase of 10 mg/m3 of formaldehyde. Both the Q and I2 statistics indicated a moderate amount of heterogeneity. Results indicate a positive association between formaldehyde exposure and childhood asthma. Given the largely cross-sectional nature of the studies underlying this meta-analysis, further well-designed prospective epidemiologic studies are needed.<br>Apesar de múltiplos estudos publicados sobre a associação entre exposição ao formol e asma infantil, uma relação consistente ainda não foi identificada. Nós relacionamos os resultados de revisão de estudos publicados a fim de fornecer uma imagem mais compreensível desta relação. Após pesquisa, foram identificados sete estudos que proviam resultados quantitativos sobre a associação entre a exposição ao formol e a asma infantil. Estudos foram heterogêneos em relação à definição de asma. Para cada estudo, uma razão de chances (RC) e 95% de intervalo de confiança (IC) para asma foram abstraídos de resultados publicados ou calculados baseados nos dados fornecidos. Foram usados modelos de efeitos fixos e aleatórios para calcular RC agrupados e IC de 95%; medidas de heterogeneidade também foram calculadas. Um modelo de efeitos fixos produziu um a RC de 1.03 (IC de 95%, 1.02-1.04), e o modelo de efeitos aleatórios produziu uma RC de 1.17 (IC de 95%, 1.01-1.36), ambos refletindo um aumento de 10 mg/m3 de exposição ao formol. As estatísticas de Q and I2 indicaram uma quantidade moderada de heterogeneidade. Resultados indicam uma associação positiva entre exposição ao formol e asma infantil. Devido à natureza de cruzamento de dados destes estudos por baixo desta meta-análise, um estudo de prospectiva epidemiológica mais aprofundada é necessário
    corecore