5 research outputs found

    Assessment of 24-hour physical behaviour in children and adolescents via wearables: a systematic review of free-living validation studies.

    Get PDF
    Objectives Studies that assess all three dimensions of the integrative 24-hour physical behaviour (PB) construct, namely, intensity, posture/activity type and biological state, are on the rise. However, reviews on validation studies that cover intensity, posture/activity type and biological state assessed via wearables are missing. Design Systematic review. The risk of bias was evaluated by using the QUADAS-2 tool with nine signalling questions separated into four domains (ie, patient selection/study design, index measure, criterion measure, flow and time). Data sources Peer-reviewed validation studies from electronic databases as well as backward and forward citation searches (1970-July 2021). Eligibility criteria for selecting studies Wearable validation studies with children and adolescents (age <18 years). Required indicators: (1) study protocol must include real-life conditions; (2) validated device outcome must belong to one dimension of the 24-hour PB construct; (3) the study protocol must include a criterion measure; (4) study results must be published in peer-reviewed English language journals. Results Out of 13 285 unique search results, 76 articles with 51 different wearables were included and reviewed. Most studies (68.4%) validated an intensity measure outcome such as energy expenditure, but only 15.9% of studies validated biological state outcomes, while 15.8% of studies validated posture/activity type outcomes. We identified six wearables that had been used to validate outcomes from two different dimensions and only two wearables (ie, ActiGraph GT1M and ActiGraph GT3X+) that validated outcomes from all three dimensions. The percentage of studies meeting a given quality criterion ranged from 44.7% to 92.1%. Only 18 studies were classified as 'low risk' or 'some concerns'. Summary Validation studies on biological state and posture/activity outcomes are rare in children and adolescents. Most studies did not meet published quality principles. Standardised protocols embedded in a validation framework are needed. PROSPERO registration number CRD42021230894

    Assessment of 24-hour physical behaviour in children and adolescents via wearables: a systematic review of free-living validation studies

    Get PDF
    Objectives: Studies that assess all three dimensions of the integrative 24-hour physical behaviour (PB) construct, namely, intensity, posture/activity type and biological state, are on the rise. However, reviews on validation studies that cover intensity, posture/activity type and biological state assessed via wearables are missing. Design: Systematic review. The risk of bias was evaluated by using the QUADAS-2 tool with nine signalling questions separated into four domains (ie, patient selection/study design, index measure, criterion measure, flow and time). Data sources: Peer-reviewed validation studies from electronic databases as well as backward and forward citation searches (1970–July 2021). Eligibility criteria for selecting studies: Wearable validation studies with children and adolescents (age <18 years). Required indicators: (1) study protocol must include real-life conditions; (2) validated device outcome must belong to one dimension of the 24-hour PB construct; (3) the study protocol must include a criterion measure; (4) study results must be published in peer-reviewed English language journals. Results: Out of 13 285 unique search results, 76 articles with 51 different wearables were included and reviewed. Most studies (68.4%) validated an intensity measure outcome such as energy expenditure, but only 15.9% of studies validated biological state outcomes, while 15.8% of studies validated posture/activity type outcomes. We identified six wearables that had been used to validate outcomes from two different dimensions and only two wearables (ie, ActiGraph GT1M and ActiGraph GT3X+) that validated outcomes from all three dimensions. The percentage of studies meeting a given quality criterion ranged from 44.7% to 92.1%. Only 18 studies were classified as ‘low risk’ or ‘some concerns’. Summary: Validation studies on biological state and posture/activity outcomes are rare in children and adolescents. Most studies did not meet published quality principles. Standardised protocols embedded in a validation framework are needed

    The Assessment of 24-Hr Physical Behavior in Children and Adolescents via Wearables: A Systematic Review of Laboratory Validation Studies

    Get PDF
    Purpose: To raise attention to the quality of published validation protocols while comparing (in)consistencies and providing an overview on wearables, and whether they show promise or not. Methods: Searches from five electronic databases were included concerning the following eligibility criteria: (a) laboratory conditions with humans (<18 years), (b) device outcome must belong to one dimension of the 24-hr physical behavior construct (i.e., intensity, posture/activity type outcomes, biological state), (c) must include a criterion measure, and (d) published in a peer-reviewed English language journal between 1980 and 2021. Results: Out of 13,285 unique search results, 123 articles were included. In 86 studies, children <13 years were recruited, whereas in 26 studies adolescents (13–18 years) were recruited. Most studies (73.2%) validated an intensity outcome such as energy expenditure; only 20.3% and 13.8% of studies validated biological state or posture/activity type outcomes, respectively. We identified 14 wearables that had been used to validate outcomes from two or three different dimensions. Most (n = 72) of the identified 88 wearables were only validated once. Risk of bias assessment resulted in 7.3% of studies being classified as “low risk,” 28.5% as “some concerns,” and 71.5% as “high risk.” Conclusion: Overall, laboratory validation studies of wearables are characterized by low methodological quality, large variability in design, and a focus on intensity. No identified wearable provides valid results across all three dimensions of the 24-hr physical behavior construct. Future research should more strongly aim at biological state and posture/activity type outcomes, and strive for standardized protocols embedded in a validation framework
    corecore