1,113 research outputs found
Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium
The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated
Empirical predictions of hypervelocity impact damage to the space station
A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point
Design of a welded joint for robotic, on-orbit assembly of space trusses
A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars
Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center
The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen
Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions
Nuclear-Level Effective Theory of Conversion
The Mu2e and COMET conversion experiments are expected to
significantly advance limits on new sources of charged lepton flavor violation
(CLFV). Almost all theoretical work in the field has focused on just two
operators. However, general symmetry arguments lead to a
conversion rate with six response functions, each of which, in principle, is
observable by varying nuclear properties of targets. We construct a
nucleon-level nonrelativistic effective theory (NRET) to clarify the
microscopic origin of these response functions and to relate rate measurements
in different targets. This exercise identifies three operators and their small
parameters that control the NRET operator expansion. We note inconsistencies in
past treatments of these parameters. The NRET is technically challenging,
involving 16 operators, several distorted electron partial waves, bound muon
upper and lower components, and an exclusive nuclear matrix element. We
introduce a trick for treating the electron Coulomb effects accurately, which
enables us to include all of these effects while producing transition densities
whose one-body matrix elements can be evaluated analytically, greatly
simplifying the nuclear physics. We derive bounds on operator coefficients from
existing and anticipated conversion experiments. We discuss
how similar NRET formulations have impacted dark matter phenomenology, noting
that the tools this community has developed could be adapted for CLFV studies.Comment: 5 pages, 2 figures, to be submitted to PR
Commensurate Fluctuations in the Pseudogap and Incommensurate spin-Peierls Phases of TiOCl
X-ray scattering measurements on single crystals of TiOCl reveal the presence
of commensurate dimerization peaks within both the incommensurate spin-Peierls
phase and the so-called pseudogap phase above T_c2. This scattering is
relatively narrow in Q-space indicating long correlation lengths exceeding ~
100 A below T* ~ 130 K. It is also slightly shifted in Q relative to that of
the commensurate long range ordered state at the lowest temperatures, and it
coexists with the incommensurate Bragg peaks below T_c2. The integrated
scattering over both commensurate and incommensurate positions evolves
continuously with decreasing temperature for all temperatures below T* ~ 130 K.Comment: To appear in Physical Review B: Rapid Communications. 5 page
Suppression of the commensurate spin-Peierls state in Sc-doped TiOCl
We have performed x-ray scattering measurements on single crystals of the
doped spin-Peierls compound Ti(1-x)Sc(x)OCl (x = 0, 0.01, 0.03). These
measurements reveal that the presence of non-magnetic dopants has a profound
effect on the unconventional spin-Peierls behavior of this system, even at
concentrations as low as 1%. Sc-doping suppresses commensurate fluctuations in
the pseudogap and incommensurate spin-Peierls phases of TiOCl, and prevents the
formation of a long-range ordered spin-Peierls state. Broad incommensurate
scattering develops in the doped compounds near Tc2 ~ 93 K, and persists down
to base temperature (~ 7 K) with no evidence of a lock-in transition. The width
of the incommensurate dimerization peaks indicates short correlation lengths on
the order of ~ 12 angstroms below Tc2. The intensity of the incommensurate
scattering is significantly reduced at higher Sc concentrations, indicating
that the size of the associated lattice displacement decreases rapidly as a
function of doping.Comment: 7 pages, 5 figure
Boston Hospitality Review: Fall 2012
Lodging Update: Greater Boston by Rachel Rogisnky and Matthew Arrants -- A Sense of Place by Rachel Black -- Hospitality, Tourism, and Politics by Stephen W. Litvin -- Paris in Boston by photo essay by Jack Dzamba -- The Cradle of American Hospitality by Bradford Hudson -- Thompon’s Spa: The Most Famous Lunch Counter in the World by Peter Szende and Heather Rule -- The Restaurant as Hybrid: Lean Manufacturer and Service Provider by Christopher Mulle
- …