1,252 research outputs found
Critical X-ray Scattering Studies of Jahn-Teller Phase Transitions in TbVAsO
The critical behaviour associated with cooperative Jahn-Teller phase
transitions in TbVAsO (where \textit{x} = 0, 0.17, 1)
single crystals have been studied using high resolution x-ray scattering. These
materials undergo continuous tetragonal orthorhombic structural phase
transitions driven by Jahn-Teller physics at T = 33.26(2) K, 30.32(2) K and
27.30(2) K for \textit{x} = 0, 0.17 and 1 respectively. The orthorhombic strain
was measured close to the phase transition and is shown to display mean field
behavior in all three samples. Pronounced fluctuation effects are manifest in
the longitudinal width of the Bragg scattering, which diverges as a power law,
with an exponent given by , on approaching the transition from
either above or below. All samples exhibited twinning; however the disordered x
= 0.17 sample showed a broad distribution of twins which were stable to
relatively low temperatures, well below T. This indicates that while the
orthorhombic strain continues to develop in a conventional mean field manner in
the presence of disorder, twin domains are easily pinned by the quenched
impurities and their associated random strains.Comment: 8 pages, 6 figure
Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field
The application of a magnetic field transverse to the easy axis, Ising
direction in the quasi-two-dimensional Kagome staircase magnet, Co3V2O8,
induces three quantum phase transitions at low temperatures, ultimately
producing a novel high field polarized state, with two distinct sublattices.
New time-of-flight neutron scattering techniques, accompanied by large angular
access, high magnetic field infrastructure allow the mapping of a sequence of
ferromagnetic and incommensurate phases and their accompanying spin
excitations. At least one of the transitions to incommensurate phases at \mu
0Hc1~6.25 T and \mu 0Hc2~7 T is discontinuous, while the final quantum critical
point at \mu 0Hc3~13 T is continuous.Comment: 5 pages manuscript, 3 pages supplemental materia
Luttinger-Liquid Behavior in the Alternating Spin-Chain System Copper Nitrate
We determine the phase diagram of copper nitrate Cu(NO)2.5DO
in the context of quantum phase transitions and novel states of matter. We
establish this compound as an ideal candidate to study quasi-1D Luttinger
liquids, 3D Bose-Einstein-Condensation of triplons, and the crossover between
1D and 3D physics. Magnetocaloric effect, magnetization, and neutron scattering
data provide clear evidence for transitions into a Luttinger liquid regime and
a 3D long-range ordered phase as function of field and temperature. Theoretical
simulations of this model material allow us to fully establish the phase
diagram and to discuss it in the context of dimerized spin systems.Comment: 5 pages, 4 figure
Nature of the spin dynamics and 1/3 magnetization plateau in azurite
We present a specific heat and inelastic neutron scattering study in magnetic
fields up into the 1/3 magnetization plateau phase of the diamond chain
compound azurite Cu(CO)(OH). We establish that the
magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a
chain of monomers, which are separated by dimers on the
diamond chain backbone. The effective spin couplings K
and K are derived from the monomer and dimer
dispersions. They are associated to microscopic couplings K,
K and a ferromagnetic K, possibly as
result of orbitals in the Cu-O bonds providing the superexchange
pathways.Comment: 5 pages, 4 figure
Asymmetric Thermal Lineshape Broadening in a Gapped 3-Dimensional Antiferromagnet - Evidence for Strong Correlations at Finite Temperature
It is widely believed that magnetic excitations become increasingly
incoherent as temperature is raised due to random collisions which limit their
lifetime. This picture is based on spin-wave calculations for gapless magnets
in 2 and 3 dimensions and is observed experimentally as a symmetric Lorentzian
broadening in energy. Here, we investigate a three-dimensional dimer
antiferromagnet and find unexpectedly that the broadening is asymmetric -
indicating that far from thermal decoherence, the excitations behave
collectively like a strongly correlated gas. This result suggests that a
temperature activated coherent state of quasi-particles is not confined to
special cases like the highly dimerized spin-1/2 chain but is found generally
in dimerized antiferromagnets of all dimensionalities and perhaps gapped
magnets in general
Structural Fluctuations in the Spin Liquid State of Tb2Ti2O7
High resolution X-ray scattering measurements on single crystal Tb2Ti2O7
reveal finite structural correlations at low temperatures. This geometrically
frustrated pyrochlore is known to exhibit a spin liquid, or cooperative
paramagnetic state, at temperatures below ~ 20 K. Parametric studies of
structural Bragg peaks appropriate to the Fdm space group of Tb2Ti2O7
reveal substantial broadening and peak intensity reduction in the temperature
regime 20 K to 300 mK. We also observe a small, anomalous lattice expansion on
cooling below a density maximum at ~ 18 K. These measurements are consistent
with the development of fluctuations above a cooperative Jahn-Teller,
cubic-tetragonal phase transition at very low temperatures.Comment: 5 pages, 4 figures, submitted for publicatio
Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation
Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a
one-dimensional (1D) diamond chain antiferromagnet. Early studies of this
material imply the presence of an ordered antiferromagnetic phase below K while magnetization measurements have revealed a 1/3 magnetization
plateau. Until now, no corroborating neutron scattering results have been
published to confirm the ordered magnetic moment structure. We present recent
neutron diffraction results which reveal the presence of commensurate magnetic
order in azurite which coexists with significant magnetoelastic strain. The
latter of these effects may indicate the presence of spin frustration in zero
applied magnetic field. Muon spin rotation, SR, reveals an onset of
short-range order below 3K and confirms long-range order below .Comment: 5 pages, 4 figures, PHYSICAL REVIEW B 81, 140406(R) (2010
Humorous Cartoons Made by Preservice Teachers for Teaching Science Concepts to Elementary Students
Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper understanding of content and creative play with language. A master’s degree student enrolled in a graduate course in instructional design acted as a consultant to a faculty member teaching a course in literacy methods for preservice elementary teachers and engaged undergraduates in creating humorous cartoons to teach science content. The preservice teachers read science trade books designed for an elementary school audience and listed science content ideas and terms about a given topic (earthquakes, volcanoes, fossils, crystals, glacier, or caves). They noted confusing topic-related terms that were homophones, words with multiple meanings, or words that sounded very similar to other common words, thus identifying possible wordings for puns. Next, they analyzed given cartoons for science content and humor, making suggestions for their improvement. They completed partially-finished cartoons to convey science information in a funny way. Finally, they created original cartoons of their own using their choice of scenario. A survey was administered to the preservice elementary teachers partway through the cartoon creation process to determine ways to help them. Students reported that they learned much science information from the trade books, and discovered how difficult it was to produce humor. They noted the motivating aspects of using humor in science and working within a group of peers. They found it difficult to generate creative ideas for cartoons and suggested that they be given more example cartoons and more opportunities for group brainstorming. Color cartoon scenarios made with clip art, along with idea-prompting questions, were provided and these increased productivity of humorous cartoons related to science content. Forty-eight color cartoons with accompanying science explanations created by the authors and preservice teachers are included as an appendix. These address the science topics of earthquakes, volcanoes, fossils, crystals, glaciers, or caves. We recommend that cartoons be used as part of science teaching because of their motivating and creative aspects. [14 references, 8 tables, 1 appendix of 48 color cartoons
Anisotropic critical magnetic fluctuations in the ferromagnetic superconductor UCoGe
We report neutron scattering measurements of critical magnetic excitations in
the weakly ferromagnetic superconductor UCoGe. The strong non-Landau damping of
the excitations we observe, although unusual has been found in another related
ferromagnet, UGe2 at zero pressure. However, we also find there is a
significant anisotropy of the magnetic correlation length in UCoGe that
contrasts with an almost isotropic length for UGe2. The values of the magnetic
correlation length and damping are found to be compatible with
superconductivity on small Fermi surface pockets. The anisotropy may be
important to explain why UCoGe is a superconductor at zero pressure while UGe2
is not.Comment: Accepted PRL (http://prl.aps.org/
Hypertension during Pregnancy is Associated with Coronary Artery Calcium Independent of Renal Function
Abstract Background: Hypertension during pregnancy (HDP) increases the risk of future coronary heart disease (CHD), but it is unknown whether this association is mediated by renal injury. Reduced renal function is both a complication of HDP and a risk factor for CHD. Methods: Logistic regression models were fit to examine the association between a history of HDP and the presence and extent of coronary artery calcification (CAC), a measure of subclinical coronary artery atherosclerosis, in 498 women from the Epidemiology of Coronary Artery Calcification Study (mean age 63.3+/-9.3 years). Results: Fifty-two (10.4%) women reported a history of HDP. After adjusting for age at time of study participation, HDP was associated with increased serum creatinine later in life (p=0.014). HDP was positively associated with the presence of CAC after adjusting for age at time of study participation (OR=2.7, 95% CI 1.4-5.4). This association was slightly attenuated with adjustment for body size and blood pressure (OR=2.4, 95% CI 1.2-4.9) but was not further attenuated with adjustment for serum creatinine and urinary albumin/creatinine ratio (OR=2.6, 95% CI 1.3-5.3). Results were similar for CAC extent. Conclusions: HDP may increase a woman's risk of future CHD beyond traditional risk factors and renal function. Women with a history of HDP should be monitored for potential increased risk of CHD as they age.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78144/1/jwh.2008.1285.pd
- …