1,501 research outputs found

    Intertidal reef communities of the Marmion & Shoalwater Islands marine parks

    Get PDF
    Intertidal platform reefs are a distinctive feature of the Perth coastline. Occurring adjacent to shoreline beaches and also as isolated offshore reefs, these limestone platforms have been formed by wave action over many centuries. Rising and falling tides exert a major influence on the structure of intertidal reef communities, and this influence typically results in a distinctive distribution of organisms based on their tolerance to being exposed to the air when the tide is low. Those inhabiting the highest part of the rocky shore, and therefore exposed more often and for longer periods, are typically hardy, desiccation-resistant species. Those living further seaward are more frequently submerged, although even these organisms may be exposed to the drying sun during particularly low tides, or can be periodically buried by the deposition of shifting beach sand. During winter storms, large waves may crash onto these reefs, stripping away algae and dislodging animals. Yet despite such harsh conditions, intertidal reefs can support a diverse assemblage of algae and invertebrates. Intertidal reefs are recognised as key ecological values of the Marmion and Shoalwater Islands marine parks that are located adjacent to the Perth metropolitan area. Between 2009 and 2012, marine scientists from DEC’s Marine Science Program and the WA Herbarium worked with local marine park staff to survey some of the numerous intertidal reefs in these marine parks to improve our understanding of the communities they support

    Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

    Full text link
    The application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional Kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. At least one of the transitions to incommensurate phases at \mu 0Hc1~6.25 T and \mu 0Hc2~7 T is discontinuous, while the final quantum critical point at \mu 0Hc3~13 T is continuous.Comment: 5 pages manuscript, 3 pages supplemental materia

    Magnetic soft modes in the locally distorted triangular antiferromagnet alpha-CaCr2O4

    Full text link
    In this paper we explore the phase diagram and excitations of a distorted triangular lattice antiferromagnet. The unique two-dimensional distortion considered here is very different from the 'isosceles'-type distortion that has been extensively investigated. We show that it is able to stabilize a 120{\deg} spin structure for a large range of exchange interaction values, while new structures are found for extreme distortions. A physical realization of this model is \alpha-CaCr2O4 which has 120{\deg} structure but lies very close to the phase boundary. This is verified by inelastic neutron scattering which reveals unusual roton-like minima at reciprocal space points different from those corresponding to the magnetic order.Comment: 5 pages, 3 figures and lots of spin-wave

    A cross‐faculty simulation model for authentic learning

    Get PDF
    This paper proposes a cross‐faculty simulation model for authentic learning that bridges the gap between short group‐based simulations within the classroom and longer individual placements in professional working contexts. Dissemination of the model is expected to widen the use of authentic learning approaches in higher education (HE). The model is based on a cross‐faculty project in which UK HE students acted as professional developers to produce prototype educational games for academic clients from other subject areas. Perceptions about the project were obtained from interviews with project participants. The stakeholders believed the cross‐faculty simulation to be a motivating learning experience, whilst identifying possible improvements. To evaluate whether the authenticity of the student–client relationship could be improved, the interview data were compared to four themes for authentic learning described by Rule in 2006. The data supported Rule’s themes, whilst highlighting the added value gained from meta‐awareness of the simulation as a learning opportunity

    Nature of the spin dynamics and 1/3 magnetization plateau in azurite

    Full text link
    We present a specific heat and inelastic neutron scattering study in magnetic fields up into the 1/3 magnetization plateau phase of the diamond chain compound azurite Cu3_3(CO3_3)2_2(OH)2_2. We establish that the magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a chain of S=1/2S = 1/2 monomers, which are separated by S=0S = 0 dimers on the diamond chain backbone. The effective spin couplings Jmono/kB=10.1(2)J_{mono}/k_B = 10.1(2) K and Jdimer/kB=1.8(1)J_{dimer}/k_B = 1.8(1) K are derived from the monomer and dimer dispersions. They are associated to microscopic couplings J1/kB=1(2)J_1/k_B = 1(2) K, J2/kB=55(5)J_2/k_B = 55(5) K and a ferromagnetic J3/kB=−20(5)J_3/k_B = -20(5) K, possibly as result of dz2d_{z^2} orbitals in the Cu-O bonds providing the superexchange pathways.Comment: 5 pages, 4 figure

    Asymmetric Thermal Lineshape Broadening in a Gapped 3-Dimensional Antiferromagnet - Evidence for Strong Correlations at Finite Temperature

    Full text link
    It is widely believed that magnetic excitations become increasingly incoherent as temperature is raised due to random collisions which limit their lifetime. This picture is based on spin-wave calculations for gapless magnets in 2 and 3 dimensions and is observed experimentally as a symmetric Lorentzian broadening in energy. Here, we investigate a three-dimensional dimer antiferromagnet and find unexpectedly that the broadening is asymmetric - indicating that far from thermal decoherence, the excitations behave collectively like a strongly correlated gas. This result suggests that a temperature activated coherent state of quasi-particles is not confined to special cases like the highly dimerized spin-1/2 chain but is found generally in dimerized antiferromagnets of all dimensionalities and perhaps gapped magnets in general

    Critical X-ray Scattering Studies of Jahn-Teller Phase Transitions in TbV1−x_{1-x}Asx_{x}O4_{4}

    Full text link
    The critical behaviour associated with cooperative Jahn-Teller phase transitions in TbV1−x_{1-x}Asx_{x}O4_{4} (where \textit{x} = 0, 0.17, 1) single crystals have been studied using high resolution x-ray scattering. These materials undergo continuous tetragonal →\to orthorhombic structural phase transitions driven by Jahn-Teller physics at TC_C = 33.26(2) K, 30.32(2) K and 27.30(2) K for \textit{x} = 0, 0.17 and 1 respectively. The orthorhombic strain was measured close to the phase transition and is shown to display mean field behavior in all three samples. Pronounced fluctuation effects are manifest in the longitudinal width of the Bragg scattering, which diverges as a power law, with an exponent given by x=0.45±0.04x=0.45 \pm 0.04, on approaching the transition from either above or below. All samples exhibited twinning; however the disordered x = 0.17 sample showed a broad distribution of twins which were stable to relatively low temperatures, well below TC_C. This indicates that while the orthorhombic strain continues to develop in a conventional mean field manner in the presence of disorder, twin domains are easily pinned by the quenched impurities and their associated random strains.Comment: 8 pages, 6 figure

    Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation

    Full text link
    Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a one-dimensional (1D) diamond chain antiferromagnet. Early studies of this material imply the presence of an ordered antiferromagnetic phase below TN∌1.9T_N \sim 1.9 K while magnetization measurements have revealed a 1/3 magnetization plateau. Until now, no corroborating neutron scattering results have been published to confirm the ordered magnetic moment structure. We present recent neutron diffraction results which reveal the presence of commensurate magnetic order in azurite which coexists with significant magnetoelastic strain. The latter of these effects may indicate the presence of spin frustration in zero applied magnetic field. Muon spin rotation, ÎŒ\muSR, reveals an onset of short-range order below 3K and confirms long-range order below TNT_N.Comment: 5 pages, 4 figures, PHYSICAL REVIEW B 81, 140406(R) (2010

    Analyzing the Creative Problem-Solving Process: Inventing a Product from a Given Recyclable Item

    Get PDF
    Detailed documentations of creative invention are scarce in the professional literature, but could be useful to those engaging in or studying the problem solving process. This investigation describes the creative process of graduate students (7 female, 4 male) in a problem-solving theory and practice course grappling with the task of creating products from four identical recyclable items that were circular, star-impressed bottoms of plastic juice bottles. Several popular models of the problem-solving process are compared to the participants’ steps in this invention problem. Participants first provided emotional reactions to the given ill-defined problem of making a product from the specified items. They used several techniques to generate ideas and to restrict or define the problem, choosing an optimal product that fits their require-ments. An analysis of participants’ reflections concerning their creative process showed that although participants first found the problem challenging and could not conceptualize effective products, the idea-generating activities assisted them in making a wide variety of useful products. Participants’ knowledge and skill areas were highlighted by their choices of products. After completing and presenting a first product, participants engaged in additional activities to generate ideas for a second product. The second product was either an improvement of the first product, a new but related product, or a product inspired by the work of others in the class. Products of this loosely defined problem included: maracas, dish, spin top, candy suckers, closet organizers, party decorations, yoyo, ladybug, wall dĂ©cor, flowers, catch game, party hat, candle holders, moth life cycle, catapult game, toy clock, goblets, castanets, accessory organizer, and spice shaker
    • 

    corecore