1,517 research outputs found
Intertidal reef communities of the Marmion & Shoalwater Islands marine parks
Intertidal platform reefs are a distinctive feature of the Perth coastline. Occurring adjacent to shoreline beaches and also as isolated offshore reefs, these limestone platforms have been formed by wave action over many centuries.
Rising and falling tides exert a major influence on the structure of intertidal reef communities, and this influence typically results in a distinctive distribution of organisms based on their tolerance to being exposed to the air when the tide is low. Those inhabiting the highest part of the rocky shore, and therefore exposed more often and for longer periods, are typically hardy, desiccation-resistant species. Those living further seaward are more frequently submerged, although even these organisms may be exposed to the drying sun during particularly low tides, or can be periodically buried by the deposition of shifting beach sand. During winter storms, large waves may crash onto these reefs, stripping away algae and dislodging animals. Yet despite such harsh conditions, intertidal reefs can support a diverse assemblage of algae and invertebrates.
Intertidal reefs are recognised as key ecological values of the Marmion and Shoalwater Islands marine parks that are located adjacent to the Perth metropolitan area. Between 2009 and 2012, marine scientists from DECâs Marine Science Program and the WA Herbarium worked with local marine park staff to survey some of the numerous intertidal reefs in these marine parks to improve our understanding of the communities they support
Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field
The application of a magnetic field transverse to the easy axis, Ising
direction in the quasi-two-dimensional Kagome staircase magnet, Co3V2O8,
induces three quantum phase transitions at low temperatures, ultimately
producing a novel high field polarized state, with two distinct sublattices.
New time-of-flight neutron scattering techniques, accompanied by large angular
access, high magnetic field infrastructure allow the mapping of a sequence of
ferromagnetic and incommensurate phases and their accompanying spin
excitations. At least one of the transitions to incommensurate phases at \mu
0Hc1~6.25 T and \mu 0Hc2~7 T is discontinuous, while the final quantum critical
point at \mu 0Hc3~13 T is continuous.Comment: 5 pages manuscript, 3 pages supplemental materia
Magnetic soft modes in the locally distorted triangular antiferromagnet alpha-CaCr2O4
In this paper we explore the phase diagram and excitations of a distorted
triangular lattice antiferromagnet. The unique two-dimensional distortion
considered here is very different from the 'isosceles'-type distortion that has
been extensively investigated. We show that it is able to stabilize a 120{\deg}
spin structure for a large range of exchange interaction values, while new
structures are found for extreme distortions. A physical realization of this
model is \alpha-CaCr2O4 which has 120{\deg} structure but lies very close to
the phase boundary. This is verified by inelastic neutron scattering which
reveals unusual roton-like minima at reciprocal space points different from
those corresponding to the magnetic order.Comment: 5 pages, 3 figures and lots of spin-wave
A crossâfaculty simulation model for authentic learning
This paper proposes a crossâfaculty simulation model for authentic learning that bridges the gap between short groupâbased simulations within the classroom and longer individual placements in professional working contexts. Dissemination of the model is expected to widen the use of authentic learning approaches in higher education (HE). The model is based on a crossâfaculty project in which UK HE students acted as professional developers to produce prototype educational games for academic clients from other subject areas. Perceptions about the project were obtained from interviews with project participants. The stakeholders believed the crossâfaculty simulation to be a motivating learning experience, whilst identifying possible improvements. To evaluate whether the authenticity of the studentâclient relationship could be improved, the interview data were compared to four themes for authentic learning described by Rule in 2006. The data supported Ruleâs themes, whilst highlighting the added value gained from metaâawareness of the simulation as a learning opportunity
Nature of the spin dynamics and 1/3 magnetization plateau in azurite
We present a specific heat and inelastic neutron scattering study in magnetic
fields up into the 1/3 magnetization plateau phase of the diamond chain
compound azurite Cu(CO)(OH). We establish that the
magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a
chain of monomers, which are separated by dimers on the
diamond chain backbone. The effective spin couplings K
and K are derived from the monomer and dimer
dispersions. They are associated to microscopic couplings K,
K and a ferromagnetic K, possibly as
result of orbitals in the Cu-O bonds providing the superexchange
pathways.Comment: 5 pages, 4 figure
Asymmetric Thermal Lineshape Broadening in a Gapped 3-Dimensional Antiferromagnet - Evidence for Strong Correlations at Finite Temperature
It is widely believed that magnetic excitations become increasingly
incoherent as temperature is raised due to random collisions which limit their
lifetime. This picture is based on spin-wave calculations for gapless magnets
in 2 and 3 dimensions and is observed experimentally as a symmetric Lorentzian
broadening in energy. Here, we investigate a three-dimensional dimer
antiferromagnet and find unexpectedly that the broadening is asymmetric -
indicating that far from thermal decoherence, the excitations behave
collectively like a strongly correlated gas. This result suggests that a
temperature activated coherent state of quasi-particles is not confined to
special cases like the highly dimerized spin-1/2 chain but is found generally
in dimerized antiferromagnets of all dimensionalities and perhaps gapped
magnets in general
Critical X-ray Scattering Studies of Jahn-Teller Phase Transitions in TbVAsO
The critical behaviour associated with cooperative Jahn-Teller phase
transitions in TbVAsO (where \textit{x} = 0, 0.17, 1)
single crystals have been studied using high resolution x-ray scattering. These
materials undergo continuous tetragonal orthorhombic structural phase
transitions driven by Jahn-Teller physics at T = 33.26(2) K, 30.32(2) K and
27.30(2) K for \textit{x} = 0, 0.17 and 1 respectively. The orthorhombic strain
was measured close to the phase transition and is shown to display mean field
behavior in all three samples. Pronounced fluctuation effects are manifest in
the longitudinal width of the Bragg scattering, which diverges as a power law,
with an exponent given by , on approaching the transition from
either above or below. All samples exhibited twinning; however the disordered x
= 0.17 sample showed a broad distribution of twins which were stable to
relatively low temperatures, well below T. This indicates that while the
orthorhombic strain continues to develop in a conventional mean field manner in
the presence of disorder, twin domains are easily pinned by the quenched
impurities and their associated random strains.Comment: 8 pages, 6 figure
Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation
Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a
one-dimensional (1D) diamond chain antiferromagnet. Early studies of this
material imply the presence of an ordered antiferromagnetic phase below K while magnetization measurements have revealed a 1/3 magnetization
plateau. Until now, no corroborating neutron scattering results have been
published to confirm the ordered magnetic moment structure. We present recent
neutron diffraction results which reveal the presence of commensurate magnetic
order in azurite which coexists with significant magnetoelastic strain. The
latter of these effects may indicate the presence of spin frustration in zero
applied magnetic field. Muon spin rotation, SR, reveals an onset of
short-range order below 3K and confirms long-range order below .Comment: 5 pages, 4 figures, PHYSICAL REVIEW B 81, 140406(R) (2010
Analyzing the Creative Problem-Solving Process: Inventing a Product from a Given Recyclable Item
Detailed documentations of creative invention are scarce in the professional literature, but could be useful to those engaging in or studying the problem solving process. This investigation describes the creative process of graduate students (7 female, 4 male) in a problem-solving theory and practice course grappling with the task of creating products from four identical recyclable items that were circular, star-impressed bottoms of plastic juice bottles. Several popular models of the problem-solving process are compared to the participantsâ steps in this invention problem. Participants first provided emotional reactions to the given ill-defined problem of making a product from the specified items. They used several techniques to generate ideas and to restrict or define the problem, choosing an optimal product that fits their require-ments. An analysis of participantsâ reflections concerning their creative process showed that although participants first found the problem challenging and could not conceptualize effective products, the idea-generating activities assisted them in making a wide variety of useful products. Participantsâ knowledge and skill areas were highlighted by their choices of products. After completing and presenting a first product, participants engaged in additional activities to generate ideas for a second product. The second product was either an improvement of the first product, a new but related product, or a product inspired by the work of others in the class. Products of this loosely defined problem included: maracas, dish, spin top, candy suckers, closet organizers, party decorations, yoyo, ladybug, wall dĂ©cor, flowers, catch game, party hat, candle holders, moth life cycle, catapult game, toy clock, goblets, castanets, accessory organizer, and spice shaker
- âŠ