59 research outputs found

    Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    Get PDF
    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin–glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor responses between PACAP38 and VIP in 16 healthy volunteers in a double-blind, placebo-controlled, crossover study. All participants received intradermal injections of 200 pmol PACAP38, 200 pmol VIP and placebo into the volar forearm. Measurements included pain intensity on a visual analog scale (VAS), blood flow by laser Doppler flowmetry, visual flare and wheal. Pain intensities after PACAP38 and VIP were mild and limited to a short time of about 100 s after injection. The area under the VAS-time curve was larger following PACAP38 (P = 0.004) and VIP (P = 0.01) compared to placebo. We found no statistical difference in pain perception between PACAP38 and VIP. Skin blood flow increase, flare and wheal were larger after both PACAP38 (P = 0.011) and VIP (P = 0.001) compared to placebo. VIP induced a considerably larger increase in skin blood flow, flare and wheal than PACAP38 (P = 0.002). In conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors

    Tuning in C-nociceptors to reveal mechanisms in chronic neuropathic pain

    No full text
    Objective: Develop and validate a low-intensity sinusoidal electrical stimulation paradigm to preferentially activate C-fibers in human skin. Methods: Sinusoidal transcutaneous stimulation (4Hz) was assessed psychophysically in healthy volunteers (n = 14) and neuropathic pain patients (n = 9). Pursuing laser Doppler imaging and single nociceptor recordings in vivo in humans (microneurography) and pigs confirmed the activation of “silent” C-nociceptors. Synchronized C-fiber compound action potentials were evoked in isolated human nerve fascicles in vitro. Live cell imaging of L4 dorsal root ganglia in anesthetized mice verified the recruitment of small-diameter neurons during transcutaneous 4-Hz stimulation of the hindpaw (0.4mA). Results: Transcutaneous sinusoidal current (0.05–0.4mA, 4Hz) activated “polymodal” C-fibers (50% at ∼0.03mA) and “silent” nociceptors (50% at ∼0.04mA), intensities substantially lower than that required with transcutaneous 1-ms rectangular pulses (“polymodal” ∼3mA, “silent” ∼50mA). The stimulation induced delayed burning (nonpulsating) pain and a pronounced axon-reflex erythema, both indicative of C-nociceptor activation. Pain ratings to repetitive stimulation (1 minute, 4Hz) adapted in healthy volunteers by Numeric Rating Scale (NRS) –3 and nonpainful skin sites of neuropathic pain patients by NRS –0.5, whereas pain even increased in painful neuropathic skin by approximately NRS +2. Interpretation: Sinusoidal electrical stimulation at 4Hz enables preferential activation of C-nociceptors in pig and human skin that accommodates during ongoing (1-minute) stimulation. Absence of such accommodation in neuropathic pain patients suggest axonal hyperexcitability that could be predictive of alterations in peripheral nociceptor encoding and offer a potential therapeutic entry point for topical analgesic treatment. Ann Neurol 2018;83:945–957

    Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor

    No full text
    The biolipid sphingosine-1-phosphate (S1P) is an essential modulator of innate immunity, cell migration, and wound healing. It is released locally upon acute tissue injury from endothelial cells and activated thrombocytes and, therefore, may give rise to acute post-traumatic pain sensation via a yet elusive molecular mechanism. We have used an interdisciplinary approach to address this question, and we find that intradermal injection of S1P induced significant licking and flinching behavior in wild-type mice and a dose-dependent flare reaction in human skin as a sign of acute activation of nociceptive nerve terminals. Notably, S1P evoked a small excitatory ionic current that resulted in nociceptor depolarization and action potential firing. This ionic current was preserved in "cation-free" solution and blocked by the nonspecific Cl(-) channel inhibitor niflumic acid and by preincubation with the G-protein inhibitor GDP-β-S. Notably, S1P(3) receptor was detected in virtually all neurons in human and mouse DRG. In line with this finding, S1P-induced neuronal responses and spontaneous pain behavior in vivo were substantially reduced in S1P(3)(-/-) mice, whereas in control S1P(1) floxed (S1P(1)(fl/fl)) mice and mice with a nociceptor-specific deletion of S1P(1)(-/-) receptor (SNS-S1P(1)(-/-)), neither the S1P-induced responses in vitro nor the S1P-evoked pain-like behavior was altered. Therefore, these findings indicate that S1P evokes significant nociception via G-protein-dependent activation of an excitatory Cl(-) conductance that is largely mediated by S1P(3) receptors present in nociceptors, and point to these receptors as valuable therapeutic targets for post-traumatic pain.María Camprubí-Robles, Norbert Mair, Manfred Andratsch, Camilla Benetti, Dimitra Beroukas, Roman Rukwied ... et al
    corecore