2 research outputs found

    DataSheet_1_Grain-size, coarse fraction lithology and clay mineral compositions of surface sediments from Ross Sea, Antarctica: implications for their provenance and delivery mode.xls

    No full text
    Knowledge on spatial distribution, provenance and delivery mode of surface sediment aids in interpretation of nearby sediment records for paleoenvironmental reconstruction. Such knowledge, however, remains largely unknown for the modern Ross Sea, Antarctica: a key region for understanding the dynamical behavior of Antarctic Ice Sheet over geological past. In this study, we address this gap by analyzing the grain-size distribution, coarse fraction (>250 μm) lithology, and clay mineralogy of a set of surface sediment samples covering the whole Ross Sea continental shelf. Our data reveals that the sediments were mostly delivered by icebergs and bottom currents. Iceberg delivery was significantly controlled by factors such as water depth, proximity to the iceberg sources, and invasion of the Modified Circumpolar Deep Water. Bottom current activity was stronger in the Western Ross Sea (WRS) than in the Eastern Ross Sea (ERS), controlled by the formation and transport of Dense Shelf Water. Three major sorts of coarse fraction were identified, including the quartz-rich Iceberg Rafted Detritus (IRD) originating from West Antarctic glaciers and primarily distributed in the ERS, the mafic rocks-rich IRD from the Ferrar Group as well as the McMurdo Volcanic Group and mainly found in the WRS, and deformed silt traced back to the grounding zone of the David Glacier-Dragalski Ice Tongue system. The distribution of clay minerals is dominated by a distinct binary mixing pattern. Smectite and kaolinite are mainly present in the ERS, derived from beneath the West Antarctic Ice Sheet. Higher illite and chlorite contents were found offshore of the Southern Victoria Land, derived from the East Antarctic craton. Overall, these results demonstrate that the glaciers draining into Ross Sea from both the East and West Antarctic Ice Sheets are highly dynamical in the context of modern climate conditions, with implications for potential contribution to future sea level rise.</p

    Table_1_Seasonal variations of siliceous microplankton fluxes and radiolarian assemblages linked to environmental conditions in Prydz Bay polynya, Eastern Antarctica.docx

    No full text
    Siliceous microplankton is an effective proxy for connecting modern and past marine environments; however, radiolarians have been understudied in Prydz Bay, Eastern Antarctica. This study investigated the changes in the siliceous microbiota fluxes and radiolarian assemblages captured in a 1-year time-series sediment trap (February 2014 to February 2015, ~490 m water depth) in the polynya of Prydz Bay. The results exhibited the strong seasonality in the radiolarian assemblages and the fluxes of radiolarians, diatoms, silicoflagellates and sponge spicules, with low numbers in winter and high numbers in summer. Seasonal variations in the sea ice and plankton community were critical in these patterns. The total radiolarian flux (TRF) displayed three peaks with higher flux than the annual average TRF over the year, all of which occurred in summer. These TRF peaks were mainly driven by seasonal fluctuations of sea ice, primary productivity, grazing pressure caused by phytophagous zooplankton and resuspension of small radiolarians in the surface sediments induced by modified Circumpolar Deep Water (mCDW) intrusion onto the shelf. There were also two notable low-TRF stages, mainly related to full sea-ice coverage and high grazing pressure. Two dominant assemblages were recognized by means of Q-factor analysis. Dominant assemblage one was composed of three small-sized taxa, Antarctissa sp., Phormacantha hystrix and Plectacantha oikiskos, which could be used as a proxy for primary productivity in the Marginal Ice Zone (MIZ) in Prydz Bay. Dominant assemblage two was composed of Antarctissa strelkovi and Antarctissa denticulata, with A. strelkovi dominating. The high flux and high relative abundance of A. strelkovi marked the extension of Ice Shelf Water (ISW) to the shelf area in Prydz Bay. These findings will provide new insights and reliable proxies for modern and paleoceanographic research in the Southern Ocean.</p
    corecore