31,407 research outputs found

    Vortex-enhanced propulsion

    Get PDF
    It has been previously suggested that the generation of coherent vortical structures in the near-wake of a self-propelled vehicle can improve its propulsive efficiency by manipulating the local pressure field and entrainment kinematics. This paper investigates these unsteady mechanisms analytically and in experiments. A self-propelled underwater vehicle is designed with the capability to operate using either steady-jet propulsion or a pulsed-jet mode that features the roll-up of large-scale vortex rings in the near-wake. The flow field is characterized by using a combination of planar laser-induced fluorescence, laser Doppler velocimetry and digital particle-image velocimetry. These tools enable measurement of vortex dynamics and entrainment during propulsion. The concept of vortex added-mass is used to deduce the local pressure field at the jet exit as a function of the shape and motion of the forming vortex rings. The propulsive efficiency of the vehicle is computed with the aid of towing experiments to quantify hydrodynamic drag. Finally, the overall vehicle efficiency is determined by monitoring the electrical power consumed by the vehicle in steady and unsteady propulsion modes. This measurement identifies conditions under which the power required to create flow unsteadiness is offset by the improved vehicle efficiency. The experiments demonstrate that substantial increases in propulsive efficiency, over 50 % greater than the performance of the steady-jet mode, can be achieved by using vortex formation to manipulate the near-wake properties. At higher vehicle speeds, the enhanced performance is sufficient to offset the energy cost of generating flow unsteadiness. An analytical model explains this enhanced performance in terms of the vortex added-mass and entrainment. The results suggest a potential mechanism to further enhance the performance of existing engineered propulsion systems. In addition, the analytical methods described here can be extended to examine more complex propulsion systems such as those of swimming and flying animals, for whom vortex formation is inevitable

    Can rigidly rotating polytropes be sources of the Kerr metric?

    Full text link
    We use a recent result by Cabezas et al. to build up an approximate solution to the gravitational field created by a rigidly rotating polytrope. We solve the linearized Einstein equations inside and outside the surface of zero pressure including second-order corrections due to rotational motion to get an asymptotically flat metric in a global harmonic coordinate system. We prove that if the metric and their first derivatives are continuous on the matching surface up to this order of approximation, the multipole moments of this metric cannot be fitted to those of the Kerr metric.Comment: LaTeX, 17 pages, submitted to CQ

    Inert-Sterile Neutrino: Cold or Warm Dark Matter Candidate

    Full text link
    In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they have masses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds, in particular imposed by X-ray observations, apply to them. We point out that in a particular variation of the inert doublet model, sterile neutrinos can account for the dark matter in the Universe and may be either cold or warm dark matter candidates, even for masses much larger than the keV range. These Inert-Sterile neutrinos, produced non-thermally in the early Universe, would be stable and have very small couplings to Standard Model particles, rendering very difficult their detection in either direct or indirect dark matter searches. They could be, in principle, revealed in colliders by discovering other particles in the model.Comment: 10 pages, 5 figures; version 2: small changes in the text and references adde

    Universal Amplitude Ratios in the Ising Model in Three Dimensions

    Get PDF
    We use a high-precision Monte Carlo simulation to determine the universal specific-heat amplitude ratio A+/A- in the three-dimensional Ising model via the impact angle \phi of complex temperature zeros. We also measure the correlation-length critical exponent \nu from finite-size scaling, and the specific-heat exponent \alpha through hyperscaling. Extrapolations to the thermodynamic limit yield \phi = 59.2(1.0) degrees, A+/A- = 0.56(3), \nu = 0.63048(32) and \alpha = 0.1086(10). These results are compatible with some previous estimates from a variety of sources and rule out recently conjectured exact values.Comment: 17 pages, 5 figure

    Physical interpretation of NUT solution

    Full text link
    We show that the well-known NUT solution can be correctly interpreted as describing the exterior field of two counter-rotating semi-infinite sources possessing negative masses and infinite angular momenta which are attached to the poles of a static finite rod of positive mass.Comment: 7 pages, 1 figure, submitted to Classical and Quantum Gravit

    Neutrino-Oxygen CC0π\pi scattering in the SuSAv2-MEC model

    Get PDF
    We present the predictions of the SuSAv2-MEC model for the double differential charged-current muonic neutrino (antineutrino) cross section on water for the T2K neutrino (antineutrino) beam. We validate our model by comparing with the available inclusive electron scattering data on oxygen and compare our predictions with the recent T2K νμ\nu_\mu-16^{16}O data, finding good agreement at all kinematics. We show that the results are very similar to those obtained for νμ12\nu_\mu-^{12}C scattering, except at low energies, and we comment on the origin of this difference. A factorized spectral function model of 16^{16}O is also included for purposes of comparison.Comment: 28 pages, 10 figures, JLAB-THY-17-2586. Version 2 accepted for publication in Journal of Physics G: Nucl. Part. Phy

    Relativistic effects in two-particle emission for electron and neutrino reactions

    Get PDF
    Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.Comment: Major revision (shortened). 22 pages, 18 figure

    Atomic excitations during the nuclear {\ss}- decay in light atoms

    Full text link
    Probabilities of various final states are determined numerically for a number of {\ss}- decaying light atoms. In our evaluations of the final state probabilities we have used the highly accurate atomic wave functions constructed for each few-electron atom/ion. We also discuss an experimental possibility to observe negatively charged ions which form during the nuclear {\ss}+ decays. High order corrections to the results obtained for {\ss}+/- decays in few-electron atoms with the use of sudden approximation are considered.Comment: 26 pages, 40 references, 6 tables and 0 figure

    Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    Get PDF
    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e,e)(e,e') scattering from 12^{12}C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ\Delta isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.Comment: 5 pages, 6 figure
    corecore