83 research outputs found

    The Current Situation and Strategy for the Building of State Leadersā€™ Public Image: Based on the Investigation for College Studentsā€™ Identification Degree on the Building of State Leadersā€™ Public Image

    Get PDF
    Globalization has triggered a holistic change in todayā€™s world, and the emergence of new media has also broken the closed system of political communication in China so that it is altering the political communication environment to a certain extent and colonizing the effective mechanism for the communication of the state leadersā€™ public image, which creates specific and stereoscopic image of the state leaders vividly from all-around and multiple directions, making college students deepen our understanding about the state leaders in the common social world. And it is invisibly narrowing the distance between the state leaders and college students in order to realize the two-way interaction between state leaders and the public. Therefore, college studentsā€™ individual development and the building of the state leadersā€™ new image proceed simultaneously, which is bound to produce unexpected interaction, so we need to encourage the reconciliation between college studentsā€™ self-identity and social identity. It is regarded as the new measure to establish a new image of the stateā€™s leaders

    Linear-array-based photoacoustic tomography for label-free high throughput detection and quantification of circulating melanoma tumor cell clusters

    Get PDF
    Circulating tumor cell (CTC) clusters arise from multicellular grouping in the primary tumor and elevate the metastatic potential by 23 to 50 fold compared to single CTCs. High throughout detection and quantification of CTC clusters is critical for understanding the tumor metastasis process and improving cancer therapy. In this work, we report a linear-array-based photoacoustic tomography (LA-PAT) system capable of label-free high-throughput CTC cluster detection and quantification in vivo. LA-PAT detects CTC clusters and quantifies the number of cells in them based on the contrast-to-noise ratios (CNRs) of photoacoustic signals. The feasibility of LA-PAT was first demonstrated by imaging CTC clusters ex vivo. LA-PAT detected CTC clusters in the blood-filled microtubes and computed the number of cells in the clusters. The size distribution of the CTC clusters measured by LA-PAT agreed well with that obtained by optical microscopy. We demonstrated the ability of LA-PAT to detect and quantify CTC clusters in vivo by imaging injected CTC clusters in rat tail veins. LA-PAT detected CTC clusters immediately after injection as well as when they were circulating in the rat bloodstreams. Similarly, the numbers of cells in the clusters were computed based on the CNRs of the photoacoustic signals. The data showed that larger CTC clusters disappear faster than the smaller ones. The results prove the potential of LA-PAT as a promising tool for both preclinical tumor metastasis studies and clinical cancer therapy evaluation

    Imaging small animal whole-body dynamics by single-impulse panoramic photoacoustic computed tomography

    Get PDF
    Small animal whole-body imaging, providing physiological, pathological, and phenotypical insights into biological processes, is indispensable in preclinical research. With high spatiotemporal resolution and functional contrast, small animal imaging can visualize biological dynamics in vivo at whole-body scale, which can advance both fundamental biology and translational medicine. However, current non-optical imaging techniques lack either spatiotemporal resolution or functional contrasts, and pure optical imaging suffers from either shallow penetration (up to ~1 mm) or a poor resolution-to-depth ratio (~1/3). Here, we present a standalone system, termed single-impulse panoramic photoacoustic computed tomography (SIP-PACT), which overcomes all the above limitations. Our technology, with unprecedented performance, is envisioned to complement existing modalities for imaging entire small animals. As an optical imaging modality, SIP-PACT captures the high molecular contrast of endogenous substances such as hemoglobin, melanin, and lipid, as well as exogenous biomarkers, at the whole animal scale with full-view fidelity. Unlike other optical imaging methods, SIP-PACT sees through ~5 cm of tissue in vivo, and acquires cross-sectional images with an in-plane resolution of ~100 Ī¼m. Such capabilities allow us to image, for the first time, mouse wholebody dynamics in real time with clear sub-organ anatomical and functional details and without motion artifacts. SIPPACT can capture transients of whole-body oxygen saturation and pulse wave propagation in vivo without labeling. In sum, we expect widespread applications of SIP-PACT as a whole-body imaging tool for small animals in fundamental biology, pharmacology, pathology, oncology, and other areas

    Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    Get PDF
    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification

    Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution

    Get PDF
    Imaging of small animals has played an indispensable role in preclinical research by providing high-dimensional physiological, pathological and phenotypic insights with clinical relevance. Yet, pure optical imaging suffers from either shallow penetration (up to ~1ā€“2ā€‰mm) or a poor depth-to-resolution ratio (~3), and non-optical techniques for whole-body imaging of small animals lack either spatiotemporal resolution or functional contrast. Here, we demonstrate that stand-alone single-impulse panoramic photoacoustic computed tomography (SIP-PACT) mitigates these limitations by combining high spatiotemporal resolution (125 Ī¼m in-plane resolution, 50ā€‰Ī¼s per frame data acquisition and 50 Hz frame rate), deep penetration (48 mm cross-sectional width in vivo), anatomical, dynamical and functional contrasts, and full-view fidelity. Using SIP-PACT, we imaged in vivo whole-body dynamics of small animals in real time and obtained clear sub-organ anatomical and functional details. We tracked unlabelled circulating melanoma cells and imaged the vasculature and functional connectivity of whole rat brains. SIP-PACT holds great potential for both preclinical imaging and clinical translation

    Evaluation of the IP-10 mRNA release assay for diagnosis of TB in HIV-infected individuals

    Get PDF
    HIV-infected individuals are susceptible to Mycobacterium tuberculosis (M.tb) infection and are at high risk of developing active tuberculosis (TB). Interferon-gamma release assays (IGRAs) are auxiliary tools in the diagnosis of TB. However, the performance of IGRAs in HIV-infected individuals is suboptimal, which limits clinical application. Interferon-inducible protein 10 (IP-10) is an alternative biomarker for identifying M.tb infection due to its high expression after stimulation with M.tb antigens. However, whether IP-10 mRNA constitutes a target for the diagnosis of TB in HIV-infected individuals is unknown. Thus, we prospectively enrolled HIV-infected patients with suspected active TB from five hospitals between May 2021 and May 2022, and performed the IGRA test (QFT-GIT) alongside the IP-10 mRNA release assay on peripheral blood. Of the 216 participants, 152 TB patients and 48 non-TB patients with a conclusive diagnosis were included in the final analysis. The number of indeterminate results of IP-10 mRNA release assay (13/200, 6.5%) was significantly lower than that of the QFT-GIT test (42/200, 21.0%) (P = 0.000026). IP-10 mRNA release assay had a sensitivity of 65.3% (95%CI 55.9% ā€“ 73.8%) and a specificity of 74.2% (95%CI 55.4% ā€“ 88.1%), respectively; while the QFT-GIT test had a sensitivity of 43.2% (95%CI 34.1% ā€“ 52.7%) and a specificity of 87.1% (95%CI 70.2% ā€“ 96.4%), respectively. The sensitivity of the IP-10 mRNA release assay was significantly higher than that of QFT-GIT test (P = 0.00062), while no significant difference was detected between the specificities of these two tests (P = 0.198). The IP-10 mRNA release assay showed a lower dependence on CD4+ T cells than that of QFT-GIT test. This was evidenced by the fact that the QFT-GIT test had a higher number of indeterminate results and a lower sensitivity when the CD4+ T cells counts were decreased (P < 0.05), while no significant difference in the number of indeterminate results and sensitivity were observed for the IP-10 mRNA release assay among HIV-infected individuals with varied CD4+T cells counts (P > 0.05). Therefore, our study suggested that M.tb specific IP-10 mRNA is a better biomarker for diagnosis of TB in HIV-infected individuals

    Altered presynaptic function and number of mitochondria in the medial prefrontal cortex of adult Cyfip2 heterozygous mice

    Get PDF
    Variants of the cytoplasmic FMR1-interacting protein (CYFIP) gene family, CYFIP1 and CYFIP2, are associated with numerous neurodevelopmental and neuropsychiatric disorders. According to several studies, CYFIP1 regulates the development and function of both pre- and post-synapses in neurons. Furthermore, various studies have evaluated CYFIP2 functions in the postsynaptic compartment, such as regulating dendritic spine morphology; however, no study has evaluated whether and how CYFIP2 affects presynaptic functions. To address this issue, in this study, we have focused on the presynapses of layer 5 neurons of the medial prefrontal cortex (mPFC) in adult Cyfip2 heterozygous (Cyfip2+/āˆ’) mice. Electrophysiological analyses revealed an enhancement in the presynaptic short-term plasticity induced by high-frequency stimuli in Cyfip2+/āˆ’ neurons compared with wild-type neurons. Since presynaptic mitochondria play an important role in buffering presynaptic Ca2+, which is directly associated with the short-term plasticity, we analyzed presynaptic mitochondria using electron microscopic images of the mPFC. Compared with wild-type mice, the number, but not the volume or cristae density, of mitochondria in both presynaptic boutons and axonal processes in the mPFC layer 5 of Cyfip2+/āˆ’ mice was reduced. Consistent with an identification of mitochondrial proteins in a previously established CYFIP2 interactome, CYFIP2 was detected in a biochemically enriched mitochondrial fraction of the mouse mPFC. Collectively, these results suggest roles for CYFIP2 in regulating presynaptic functions, which may involve presynaptic mitochondrial changes.This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea Government Ministry of Science and ICT (NRF-2018R1C1B6001235, NRF-2018M3C7A1024603, NRF-2017M3C7A1048086, and NRF-2020R1A2C3011464) and the KBRI Basic Research Programs (20-BR01-08 and 20-BR-04-01)

    Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    Get PDF
    Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-Ī¼m resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales

    A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis

    Get PDF
    BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism

    Explorations of Clinical Teaching and Training Model for Refresher Anesthesiologists

    No full text
    Objective Ā To establish and evaluate the clinical teaching and training model for refresher anesthesiologists.Ā  Methods Ā A total of 25 refresher anesthesiologists from the Department of Anesthesiology in Peking Union Medical College Hospital during the period of March to September 2023 were enrolled. They were taught with the clinical teaching and training model, namely 'tutorial system-knowledge update-clinical practice'. The refresher anesthesiologists completed the same structured pre-designed questionnaire at the beginning and the end of training respectively. The scores were recorded and compared to evaluate the effectiveness of the clinical training model. Feedback from refresher anesthesiologists about the teaching and training model was also collected.Ā  Results Ā Altogether 84%(21/25) and 100%(25/25) of questionnaires distributed were completed respectively, and 92% students gave positive feedback. The mean score at the end of training (10.1Ā±1.1) was significantly higher than that at the beginning (5.6Ā±1.8)(P < 0.01).Ā  Conclusion Ā The 'tutorial system-knowledge update-clinical practice' clinical teaching and training model was significantly useful to elevate the effectiveness of training refresher anesthesiologists and their satisfaction
    • ā€¦
    corecore