9 research outputs found

    Analysis of Metabolites Difference of the Albino Tea Tree Variety 'Ming Guan'

    Get PDF
    ‘Ming guan’ is a new excellent albino tea variety bred from the descendants of Bai jiguan. In order to explore the quality difference of Ming guan multi tea processing, the fresh leaves of Ming guan were used as raw materials to make the corresponding tea types according to the processing methods of green tea, black tea and white tea, and sensory quality evaluation, aroma and taste analysis were conducted. The results showed that the aroma of Ming guan green tea was tender, floral and fruity, with a mellow taste, the aroma of Ming guan black tea was sweet, floral, with a sweet taste, the aroma of Ming guan white tea was millets, floral, with a fresh taste, and the different processes of Ming guan tea had their own unique floral characteristics. Among the aroma components of Ming guan green tea, terpene aroma components with floral aroma were relatively more abundant, followed by ester aroma components with fruit aroma, which played an important role in the formation of the aroma of Ming guan green tea. The representative aroma components of Ming guan green tea were leaf alcohol ester of foliol caproate, 3-hexenyl caproate, 2-hexenyl caproate, nerolidol, leaf alcohol ester of butyric acid, olivetol and α-farnesene, the representative components of which were mainly esters with fruity aroma and alcohols with floral and fruity aroma, creating the characteristic of Ming guan green tea floral and fruity varieties. The representative components of Ming guan black tea were dihydrolinalool, α-cephalene, β-Ionone, γ-cadinene, methyl hexadecanoic acid and benzaldehyde, which were mainly terpenes and alcohols with floral and sweet aromas, contributing to the floral and sweet aromatic characteristics of Ming guan black tea. The representative components of Ming guan white tea were geraniol, myrcene, 3-carene, linalyl acetate and linalool, and the representative components are mainly alcohols and terpenes with floral aroma. The non-volatile components of Ming guan green tea, Ming guan black tea and Ming guan white tea vary greatly overall. The content of catechins, anthocyanins, some flavonols and flavonoid glycosides (quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-O-glucoside 7-O-rhamnoside, etc.) in Ming guan green tea was generally higher than that in Ming guan black tea and Ming guan white tea. The contents of theaflavins, phenolic acids, a few flavonol and flavonoid glycoside compounds (vitexin-2-O-galactoside, vitexin-2-O-rhamnoside, apigenin-6,8-di-C-glucoside, apigenin-6-C-glucoside, etc.) and some amino acid compounds (L-phenylalanine, L-tryptophan, L-isoleucine, L-valine, L-aspartic acid) in Ming guan black tea were higher than those in Ming guan green tea and Ming guan white tea.The content of some amino acid compounds (L-arginine, L-glutamine, L-lysine, L-histidine, L-tyrosine) in Ming guan white tea was higher than that in Ming guan green tea and Ming guan black tea, which may be affected by different processing technologies. This study could provide a theoretical basis for a comprehensive understanding of the chemical basis and quality differences of Ming guan green tea, Ming guan black tea and Ming guan white tea

    Expression of Key Structural Genes of the Phenylpropanoid Pathway Associated with Catechin Epimerization in Tea Cultivars

    No full text
    Catechin epimerization is an important factor affecting tea catechin compositions and thereby tea quality. However, a lack of tea germplasms with high non-epicatechins limits relative research. Here, a tea cultivar Y510 with high non-epicatechins was firstly reported and used for catechin and RNA sequencing (RNA-Seq) analysis. Results showed that the (-)-gallocatechin gallate and (+)-catechin (C) contents in Y510 were at least 136 and 6 times higher than those in Fudingdabaicha and 0306I, but the epicatechins (-)-epigallocatechin and (-)-epicatechin (EC) were significantly lower. Eleven unigenes potentially involved in catechin epimerization were identified by RNA-Seq analysis. Based on a combination of catechin and gene expression analysis, it was hypothesized that two anthocyanidin reductase genes (CsANR1, CsANR2) and an anthocyanidin synthase gene (CsANS) are the key genes affecting catechin epimerization in tea. Non-epicatechin formations were hypothesized to be mainly influenced by the expression ratio of CsANR2 to CsANR1 and the expression of CsANS. Overexpression of CsANS in an Arabidopsis mutant tds4-2 led to a significant increase of EC accumulation in seeds, revealing CsANS is important for catechin epimerization. These results shed new light on breeding tea cultivars with special catechin compositions

    A Quadratic Regression Model to Quantify Plantation Soil Factors That Affect Tea Quality

    No full text
    Tea components (tea polyphenols, catechins, free amino acids, and caffeine) are the key factors affecting the quality of green tea. This study aimed to relate key biochemical substances in tea to soil nutrient composition and the effectiveness of fertilization. Seventy tea samples and their corresponding plantation soil were randomly collected from Xinyang City, China. The catechins, free amino acids, and caffeine in tea were examined, as well as the soil pH, nitrate (NO3--N), ammonium (NH4+-N), available phosphorus (AP), available potassium (AK), and soil organic matter (SOM). The ordinary kriging was employed to visualize the spatial variation characteristic by ArcGIS. A quadratic regression model was used to analyze the effects of the soil environment on the tea. The results showed that the soil pH of the study area was suitable for cultivating tea plants. The relationship between soil pH and tea polyphenols and catechins presented the U-shape curve, whereas the soil pH and NH4+-N and the free amino acids, the soil pH, and caffeine presented the inverted U-shape curve. Soil management measures could be implemented to control the soil environment for improving the tea quality. The combination of the macro metrological model with individual experimentation could help to analyze the detailed influence mechanisms of environmental factors on plant physiological processes

    B4GALNT1 promotes hepatocellular carcinoma stemness and progression via integrin ι2β1-mediated FAK and AKT activation

    No full text
    Background & Aims: β-1,4-N-Acetyl-galactosaminyltransferase 1 (B4GALNT1) has been reported to contribute to the development of human malignancies. However, its role in hepatocellular carcinoma (HCC) remains uncharacterised. In this study, we aimed to elucidate the role of B4GALNT1 in HCC stemness and progression. Methods: Immunohistochemical staining was used to evaluate B4GALNT1 expression in HCC tissues and adjacent normal liver tissues. Flow cytometry analysis and sphere formation analysis were performed to investigate the role of B4GALNT1 in HCC stemness. Colony formation, Incucyte, wound-healing, Transwell migration, and invasion assays, and an animal model were used to study the role of B4GALNT1 in HCC progression. RNA-sequencing and co-immunoprecipitation were used to investigate the downstream targets of B4GALNT1. Results: B4GALNT1 was upregulated in HCC and associated with poor clinical outcome of patients with the disease. Moreover, B4GALNT1 promoted HCC stemness, migration, invasion, and growth. Mechanistically, B4GALNT1 not only promoted the expression of the integrin ι2β1 ligand THBS4, but also directly interacted with the β subunit of integrin ι2β1 ITGB1 to inhibit its ubiquitin-independent proteasomal degradation, resulting in activation of FAK and AKT. Ophiopogonin D inhibited HCC stemness and progression by reducing ITGB1 and THBS4 expression and inhibiting FAK and AKT activation. Conclusions: Our study suggests the B4GALNT1/integrin ι2β1/FAK/PI3K/AKT axis as a therapeutic target for the inhibition of HCC stemness and tumour progression. Impact and implications: The role and regulatory mechanism of B4GALNT1 in HCC have not been studied previously. Here, we reveal that B4GALNT1 has a crucial role in HCC stemness and progression by activating the integrin ι2β1/FAK/PI3K/AKT axis, providing a potential target for HCC therapy. In addition, we find Ophiopogonin D as a potential therapeutic drug for patients with HCC

    Programmable access to microresonator solitons with modulational sideband heating

    No full text
    Dissipative Kerr solitons formed in high-Q optical microresonators provide a route to miniaturized optical frequency combs that can revolutionize precision measurements, spectroscopy, sensing, and communication. In the past decade, a myriad of integrated material platforms have been extensively studied and developed to create photonic-chip-based soliton combs. However, the photo-thermal effect in integrated optical microresonators has been a major issue preventing simple and reliable soliton generation. Several sophisticated techniques to circumvent the photo-thermal effect have been developed. In addition, instead of the single-soliton state, emerging applications in microwave photonics and frequency metrology prefer multi-soliton states. Here, we demonstrate an approach to manage the photo-thermal effect and facilitate soliton generation. The approach is based on a single phase-modulated pump, where the generated blue-detuned sideband synergizes with the carrier and thermally stabilizes the microresonator. We apply this technique and demonstrate deterministic soliton generation of 19.97 GHz repetition rate in an integrated silicon nitride microresonator. Furthermore, we develop a program to automatically address to the target N-soliton state, in addition to the single-soliton state, with a near 100% success rate and as short as 10 s time consumption. Our method is valuable for soliton generation in essentially any platform, even with strong photo-thermal effects, and can promote wider applications of soliton frequency comb systems for microwave photonics, telecommunications, and frequency metrology

    Neutrophil extracellular traps in relationship to efficacy of systemic therapy for metastatic renal cell carcinoma

    No full text
    Abstract Background The efficacy of systemic therapy regimens, such as immune checkpoint inhibitors and tyrosine kinase inhibitors (IO‐TKI) and targeted therapy, for metastatic clear cell renal cell carcinoma (ccRCC) remains unpredictable due to the lack of effective biomarkers. Neutrophil extracellular trap (NET) plays an important role in promoting ccRCC. This study explores the NET predictive value of the efficacy in metastatic ccRCC. Methods In this retrospective study, patients with metastatic ccRCC who received targeted drugs and IO‐TKI were included. Immunofluorescence staining was utilized to quantify the levels of tissue NETs through cell counts of H3Cit(+) and MPO(+) cells. Results A total of 183 patients with metastatic ccRCC were enrolled, including 150 patients who received TKIs and 33 patients who received IO‐TKI. The levels of NETs in tumor tissue were significantly higher than in para‐tumor tissue (p < 0.001). In terms of predicting drug efficacy, a correlation between NET levels and progression‐free survival (PFS) was observed in the TKI with metachronous metastasis group (HR 1.73 [95% CI 1.02–2.91], log‐rank p = 0.037), while no correlation was observed in the TKI with synchronous metastasis group and IO‐TKI group. Regarding overall survival (OS), activated NET levels were associated with poor OS in both TKI (HR 1.60 [95% CI 1.05–2.43], log‐rank p  = 0.017) and IO‐TKI group (HR 4.35 [95% CI 1.06–17.82], log‐rank p =0.047). IMDC score (HR 1.462 [95% CI 1.030–2.075], p = 0.033) and tumor tissue NET levels (HR 1.733 [95% CI 1.165–2.579], p = 0.007) were independent prognostic risk factors for OS in patients with metastatic ccRCC.NET level was associated with poor OS in both TKI (HR 1.60 [95% CI 1.05–2.43], log‐rank p  = 0.017). Conclusions The active NET levels in tumor tissue can predict drug efficacy in patients with metastatic ccRCC who received systemic therapy. Elevated levels of NETs in tumor tissue were also associated with poor efficacy in OS

    LINC00116-encoded microprotein mitoregulin regulates fatty acid metabolism at the mitochondrial outer membrane

    No full text
    Summary: LINC00116 encodes a microprotein first identified as Mitoregulin (MTLN), where it was reported to localize to the inner membrane of mitochondria to regulate fatty acid oxidation and oxidative phosphorylation. These initial discoveries were followed by reports with differing findings about its molecular functions and submitochondrial localization. To clarify the apparent discrepancies, we constructed multiple orthogonal methods of determining the localization of MTLN, including split GFP-based reporters that enable efficient and reliable topology analyses for microproteins. These methods unequivocally demonstrate MTLN primarily localizes to the outer membrane of mitochondria, where it interacts with enzymes of fatty acid metabolism including CPT1B and CYB5B. Loss of MTLN causes the accumulation of very long-chain fatty acids (VLCFAs), especially docosahexaenoic acid (DHA). Intriguingly, loss of MTLN protects mice against western diet/fructose-induced insulin-resistance, suggests a protective effect of VLCFAs in this context. MTLN thus serves as an attractive target to control the catabolism of VLCFAs
    corecore