179 research outputs found

    Cross section design of holey optical fibers with coating based on stress analysis in tension

    Get PDF
    In this paper, the mechanical behavior of newly developed holey optical fibers with and without coating was investigated by numerical analysis. Based on experimental work, the tensile failure characteristics were observed. The stress characteristics of some typical holey fibers with different section design were studied though the finite element method under tensile load. The optimum design of air hole arrangements and sizes were proposed according to the numerical results. The influence of the coating thickness on the axial stress of holey optical fiber was also investigated. The numerical results and conclusions will be useful for the cross section optimum design of holey optical fiber for increase its strength

    Understanding Hidden Memories of Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) have been successfully applied to various natural language processing (NLP) tasks and achieved better results than conventional methods. However, the lack of understanding of the mechanisms behind their effectiveness limits further improvements on their architectures. In this paper, we present a visual analytics method for understanding and comparing RNN models for NLP tasks. We propose a technique to explain the function of individual hidden state units based on their expected response to input texts. We then co-cluster hidden state units and words based on the expected response and visualize co-clustering results as memory chips and word clouds to provide more structured knowledge on RNNs' hidden states. We also propose a glyph-based sequence visualization based on aggregate information to analyze the behavior of an RNN's hidden state at the sentence-level. The usability and effectiveness of our method are demonstrated through case studies and reviews from domain experts.Comment: Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2017

    The hadron spectra and pion form factor in dynamical holographic QCD model with anomalous 5D mass of scalar field

    Full text link
    The simplest version of the dynamical holographic QCD model is described by adding the KKSS model action on a dilaton-graviton coupled background, in which the AdS5_5 metric is deformed by the gluon condensation and further deformed by the chiral condensation. In this framework, both the chiral symmetry breaking and linear confinement can be realized, the light-flavor hadron spectra and the pion form factor were investigated but it was difficult to reconcile the light-flavor hadron spectra and pion form factor. By considering the anomalous 5-dimension mass correction of the scalar field from QCD running coupling, it is found that the light flavor hadron spectra and pion form factor can be described well simultaneously, especially the ground state and lower excitation states of scalar, pseudo scalar and axial vector meson spectra are improved, but the vector meson spectra is not sensitive to the anomalous 5-dimension mass correction of the scalar field.Comment: 14 pages, 5 figure

    Setting the Trap: Capturing and Defeating Backdoors in Pretrained Language Models through Honeypots

    Full text link
    In the field of natural language processing, the prevalent approach involves fine-tuning pretrained language models (PLMs) using local samples. Recent research has exposed the susceptibility of PLMs to backdoor attacks, wherein the adversaries can embed malicious prediction behaviors by manipulating a few training samples. In this study, our objective is to develop a backdoor-resistant tuning procedure that yields a backdoor-free model, no matter whether the fine-tuning dataset contains poisoned samples. To this end, we propose and integrate a honeypot module into the original PLM, specifically designed to absorb backdoor information exclusively. Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features while carrying minimal information about the original tasks. Consequently, we can impose penalties on the information acquired by the honeypot module to inhibit backdoor creation during the fine-tuning process of the stem network. Comprehensive experiments conducted on benchmark datasets substantiate the effectiveness and robustness of our defensive strategy. Notably, these results indicate a substantial reduction in the attack success rate ranging from 10\% to 40\% when compared to prior state-of-the-art methods

    AvatarCraft: Transforming Text into Neural Human Avatars with Parameterized Shape and Pose Control

    Full text link
    Neural implicit fields are powerful for representing 3D scenes and generating high-quality novel views, but it remains challenging to use such implicit representations for creating a 3D human avatar with a specific identity and artistic style that can be easily animated. Our proposed method, AvatarCraft, addresses this challenge by using diffusion models to guide the learning of geometry and texture for a neural avatar based on a single text prompt. We carefully design the optimization framework of neural implicit fields, including a coarse-to-fine multi-bounding box training strategy, shape regularization, and diffusion-based constraints, to produce high-quality geometry and texture. Additionally, we make the human avatar animatable by deforming the neural implicit field with an explicit warping field that maps the target human mesh to a template human mesh, both represented using parametric human models. This simplifies animation and reshaping of the generated avatar by controlling pose and shape parameters. Extensive experiments on various text descriptions show that AvatarCraft is effective and robust in creating human avatars and rendering novel views, poses, and shapes. Our project page is: https://avatar-craft.github.io/.Comment: ICCV 2023 Camera Read

    AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models

    Full text link
    Evaluating the general abilities of foundation models to tackle human-level tasks is a vital aspect of their development and application in the pursuit of Artificial General Intelligence (AGI). Traditional benchmarks, which rely on artificial datasets, may not accurately represent human-level capabilities. In this paper, we introduce AGIEval, a novel benchmark specifically designed to assess foundation model in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003, using this benchmark. Impressively, GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam. This demonstrates the extraordinary performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks that require complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal these models' strengths and limitations, providing valuable insights into future directions for enhancing their general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a more meaningful and robust evaluation of foundation models' performance in real-world scenarios. The data, code, and all model outputs are released in https://github.com/microsoft/AGIEval.Comment: 19 page
    corecore