111 research outputs found

    Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1- octadecene-alt-maleic anhydride) in aqueous solutions

    Get PDF
    Gallium-based liquid metals are attractive due to their unique combination of metallic and fluidic properties. Liquid metal nanoparticles (LM NPs), produced readily using sonication, find use in soft electronics, drug delivery, and other applications. However, LM NPs in aqueous solutions tend to oxidize and precipitate over time, which hinders their utility in systems that require long-term stability. Here, we introduce a facile route to rapidly produce an aqueous suspension of stable LM NPs within five minutes. We accomplish this by dissolving poly(1-octadecene-alt-maleic anhydride) (POMA) in toluene and mixing with deionized water in the presence of a liquid metal (LM). Sonicating the mixture results in the formation of toluene-POMA emulsions that embed the LM NPs; as the toluene evaporates, POMA coats the particles. Due to the POMA hydrophobic coating, the LM NPs remain stable in biological buffers for at least 60 days without noticeable oxidation, as confirmed by dynamic light scattering and transmission electron microscopy. Further stabilization is achieved by tuning the LM composition. This paper elucidates the stabilization mechanisms. The stable LM NPs possess the potential to advance the use of LM in biomedical applications

    Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles

    Get PDF
    Functional nanoparticles comprised of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, present exciting opportunities in the fields of flexible electronics, sensors, catalysts, and drug delivery systems. Methods used currently for producing liquid metal nanoparticles have significant disadvantages as they rely on both bulky and expensive high-power sonication probe systems, and also generally require the use of small molecules bearing thiol groups to stabilize the nanoparticles. Herein, we describe an innovative microfluidics-enabled platform as an inexpensive, easily accessible method for the on-chip mass production of EGaIn nanoparticles with tunable size distributions in an aqueous medium. We also report a novel nanoparticle-stabilization approach using brushed polyethylene glycol chains with trithiocarbonate end-groups negating the requirements for thiol additives whilst imparting a ‘stealth’ surface layer. Furthermore, we demonstrate a surface modification of the nanoparticles using galvanic replacement, and conjugation with antibodies. We envision that the demonstrated microfluidic technique can be used as an economic and versatile platform for the rapid production of liquid metal-based nanoparticles for a range of biomedical applications.

    Functional Liquid Metal Nanoparticles Produced by Liquid-Based Nebulization

    Get PDF
    Functional liquid metal nanoparticles (NPs), produced from eutectic alloys of gallium, promise new horizons in the fields of sensors, microfluidics, flexible electronics, catalysis, and biomedicine. Here, the development of a vapor cavity generating ultrasonic platform for nebulizing liquid metal within aqueous media for the one-step production of stable and functional liquid metal NPs is shown. The size distribution of the NPs is fully characterized and it is demonstrated that various macro and small molecules can also be grafted onto these liquid metal NPs during the liquid-based nebulization process. The cytotoxicity of the NPs grafted with different molecules is further explored. Moreover, it is shown that it is possible to control the thickness of the oxide layer on the produced NPs using electrochemistry that can be embedded within the platform. It is envisaged that this platform can be adapted as a cost-effective and versatile device for the rapid production of functional liquid metal NPs for future liquid metal-based optical, electronic, catalytic, and biomedical applications

    Liquid metal particles and polymers: a soft-soft system with exciting properties

    No full text
    Conspectus Gallium-based liquid metal alloys are a special type of material that is in the liquid state at (or near) room temperature. They are particularly attractive due to their unique combination of a fluidic and metallic body, together with a chemically reactive and functionable surface. As a fluid, liquid metals provide the best union of stretchability, deformability, and electrical conductivity among all soft materials. Such an advantage in combination with their low toxicity and relatively good biocompatibility have imparted liquid metals with unique features that can be harnessed for versatile applications in fields such as electronics, energy, chemistry, and biomedical research. More importantly, the fluidic nature of liquid metals allows them to be readily processed using shear for making particles with variable sizes (from nm to mm), which is not possible with solid materials. These particles have a liquid metal core-solid metal oxide shell (conductor-semiconductor) structure, allowing them to merge, transform shape, change phase, respond to stimuli, and self-heal.Despite these unique features, limited surface stability and functionality, unpredictable reactivity, and uncontrollable hydrophilicity of liquid metal particles niche their wider applications in biomedical fields. To bestow liquid metal particles with desirable surface properties while taking the benefits offered by soft features, another important soft material-polymers-can be synthesized and engineered on an on-demand basis to coat or embed liquid metal particles. This leads to the formation of liquid metal-polymer soft composites with versatile surface properties. More specifically, polymer segments with corresponding functions for surface anchoring, tuning solubility, enhancing biocompatibility, providing stimuli-responsive properties, and further bioconjugation can be linked together, thereby forming macromolecules to graft liquid metal particles for yielding soft-soft systems with exciting properties.Herein, we provide a concise review of our contributions to the production, investigation, characterization, and application of liquid metal particle-polymer composites. First, we summarize various top-down techniques developed for producing micro- to nanosized liquid metal particles. We highlight two platforms we developed for tackling long-existing problems encountered by sonication-the most widely adopted method for producing liquid metal particles. Second, we discuss the design of polymers for surface modification of particles. Various grafting strategies for polymers synthesized using different approaches are elaborated. We also discuss factors that affect the colloidal and chemical stability of the composite in biological buffers. Methods for further surface functionalization of the composite are presented, followed by providing examples of biomedical and sensing applications for the system. Next, we introduce the fabrication, unique properties, and applications of elastomeric hybrid composites incorporating liquid metal particle fillers. Finally, we offer a perspective on the opportunities and challenges for the future development of this exciting soft-soft system for realizing synergistic outcomes.</p

    Engineering metal–organic frameworks (MOFS) for controlled delivery of physiological gaseous transmitters

    No full text
    Metal–organic frameworks (MOFs) comprising metal ions or clusters coordinated to organic ligands have become a class of emerging materials in the field of biomedical research due to their bespoke compositions, highly porous nanostructures, large surface areas, good biocompatibility, etc. So far, many MOFs have been developed for imaging and therapy purposes. The unique porous nanostructures render it possible to adsorb and store various substances, especially for gaseous molecules, which is rather challenging for other types of delivery vectors. In this review, we mainly focus on the recent development of MOFs for controlled release of three gaseous transmitters, namely, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (HS). Although these gaseous molecules have been known as air pollutants for a long time, much evidence has been uncovered regarding their important physiological functions as signaling molecules. These signaling molecules could be either physically absorbed onto or covalently linked to MOFs, allowing for the release of loaded signaling molecules in a spontaneous or controlled manner. We highlight the designing concept by selective examples and display their potential applications in many fields such as cancer therapy, wound healing, and anti-inflammation. We hope more effort could be devoted to this emerging fields to develop signaling molecule-releasing MOFs with practical applications

    Tumor-penetrating peptides

    No full text
    Tumor-penetrating peptides (TPPs) have been discovered and well recognized for their unique tumor-penetrating properties, which allows for the selective delivery of therapeutic agents and diagnostics to tumor sites and mediates their distribution deep in the tumor parenchyma. The mechanisms that such peptides take advantage of to gain access to tumor parenchyma through the C-end Rule or CendR pathway after second sequence motif is exposed at the C-terminus of the peptide have been intensively investigated. Although the pathological function of the CendR pathway still remains unclear, the endocytosis uptake based on this route has shown very distinctive features in terms of tumor penetration and drug delivery. This chapter focuses on the discovery, molecular structure, drug delivery, and molecular imaging applications of TPPs. The internalization mechanisms with regards to sequence and structure of tumor penetrating peptides are also briefly summarized
    • …
    corecore